• Title/Summary/Keyword: optical resolution

Search Result 1,459, Processing Time 0.038 seconds

Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing (마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링)

  • Hong, Jihwa;Han, Yoon-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

Fabrication of High-Quality Diffractive-Lens Mold having Submicron Patterns (서브 미크론의 패턴으로 구성된 고효율 회절 렌즈 몰드 제작)

  • Woo, Do-Kyun;Hane, Kazuhiro;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1637-1642
    • /
    • 2010
  • In this paper, we present the fabrication of a high-quality diffractive-lens mold having submicron patterns, which is suitable for an ultra-slim optical system. In order to fabricate high-quality diffractive lens with a variety of submicron patterns, the multi-alignment method was used; high-resolution electron-beam lithography and FAB plasma etching were carried out to obtain the patterns. The most important key technology in the multi-alignment method is to reduce alignment error, lithography error, and etching error. In this paper, these major fabrication errors were minimized, and a high-quality diffractive lens with a diameter of $267\;{\mu}m$ (NA = 0.25), minimum pattern width of 226 nm, and thickness of 819 nm was successfully fabricated.

INFRARED EXCESS AND MOLECULAR GAS IN GALACTIC SUPERSHELLS

  • LEE JEONG-EUN;KIM KEE- TAE;KOO BON -CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.41-53
    • /
    • 1999
  • We have carried out high-resolution observations along one-dimensional cuts through the three Galactic super-shells GS 064-01-97, GS 090-28-17, and GS 174+02-64 in the HI 21 cm and CO J=l-0 lines. By comparing the HI data with IRAS data, we have derived the distributions of the $I_{100}$ and $T_{100}$ excesses, which are, respectively, the 100 ${\mu}m$ intensity and 100 ${\mu}m$ optical depth in excess of what would be expected from HI emission. We have found that both the $I_{100}$ and $T_{100}$ excesses have good correlations with the CO integrated intensity W co in all three supershells. But the $I_{100}$ excess appears to underestimate $H_2$ column density N($H_2$) by factors of 1.5-3.8. This factor is the ratio of atomic to molecular infrared emissivities, and we show that it can be roughly determined from the HI and IRAS data. By comparing the $T_{100}$ excess with $W_{co}$, we derive the conversion factor X $\equiv$ N ($H_2$) /$W_{co}{\simeq}$ 0.26 - 0.66 in the three supershells. In GS 090- 28-17, which is a very diffuse shell, our result suggests that the region with N($H_2$) $\le$ $3 {\times} 10^{20} cm^{-2}$ does not have observable CO emission, which appears to be consistent with previous results indicating that diffuse molecular gas is not observable in CO. Our results show that the molecular gas has a 60/100 ${\mu}m$ color temperature $T_d$ lower than the atomic gas. The low value of $T_d$ might be due either to the low equilibrium temperature or to the lower abundance of small grains, or a combination of both.

  • PDF

Method of Display and Processing of Binocular Stereoscopic Image for 3D Endoscopy (3차원 내시경술을 위한 양안 입체 영상처리 및 디스플레이 방법)

  • 송철규
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.531-538
    • /
    • 1998
  • This paper represents the design of 3D endoscopic image processing system in order to Improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. The proposed 3D systems have four features of stereo endoscopic image processing The multiplexer give field seauential stereo for recording and for aligning cameras and viewing stereo with 3D monitor. Demultiplexing of the field sequential image which separates out the R and L images for dual TFT-LCD 3D monitor viewed with passive polarized glasses. separable processing of the left and right eye images, and design of TFT-LCD 3D monitor. The viewing angle, zone, and image quality of the Polarization-type Stereoscopic Display (SM500TFT-3D) system which we have developed using 15 Samsung TFT-1.CD with a screen resolution of 1024×768 pixels were measured and compared with those of Electric Shutter-type Stereoscopic Display system. The result of experiments shows that the Polarization-type Stereoscopic Display System using TFT-LCD has a wade viewing angle and zone which Is necessary fort multi-view and it has better image quality and stability of the optical performances than the Electric Shutter-type does.

  • PDF

The Influence of Fluorescent Dye Doping on Efficiency of Organic Light-Emitting Diodes (형광염료 도핑이 유기발광소자의 효율에 미치는 영향)

  • Lee, jeong-gu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.301-305
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/Znq2+DCJTB/Znq2/Al and the structure of ITO/CuPc/NPB/Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

  • PDF

Performance Analysis of Sonar System Applicable to Underwater Construction Sites with High Turbidity (탁도가 높은 수중작업현장에 사용 가능한 소나시스템의 성능 분석)

  • Shin, Changjoo;Jang, In-Sung;Kim, Kihun;Choi, Hyun-Tack;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4507-4513
    • /
    • 2013
  • The developing unmanned underwater equipment can be used for underwater construction site such as underwater leveling works. If a optical camera is applied to the unmanned underwater equipment, recognition in underwater can be gone to low due to high turbidity in working field. To overcome this problem, a sonar will be installed to the unmanned underwater equipment. In this study, the resolution of the sonar and the quality test of the sonar image under high turbidity environment were conducted. And the method to indicate the boundary of the underwater construction site was proposed. By these results, the basic performance of the sonar was evaluated.

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

Forming Properties of Micro Random Pattern Using Micro Abrasive Paper Tool by Roll to Plate Indentation Method (미세 지립 페이퍼 공구와 롤투플레이트 압입공정을 이용한 마이크로 랜덤 패턴의 성형특성)

  • Jeong, Ji-Young;Je, Tae-Jin;Moon, SeungHwan;Lee, Je-Ryung;Choi, Dae-Hee;Kim, Min-Ju;Jeon, Eun-chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.385-392
    • /
    • 2016
  • Recently in the display industry, demands for high-luminance and resolution of display devices have been steadily increasing. Generally, micro linear patterns are applied to an optical film in order to improve its properties of light. However, these patterns are easily viewed to eyes and moire phenomenon can be occurred. Micro random patterns are proposed as a method to solve these problems, increasing light-luminance and light-diffusion. However, conventional pattern manufacturing technologies have long processing times and high costs making it difficult to apply to large area molds. In order to combat this issue, micro-random patterns are formed by using a roll to plate indentation method along with abrasive paper tools composed of AlSiO2, SiC, and diamond grains. Also, forming properties, such as size and fill-factor of random patterns, are analyzed depending on type, mesh of abrasive paper tools, and indentation forces.

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eom
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.173-188
    • /
    • 2005
  • The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.