• Title/Summary/Keyword: optical mouse

Search Result 77, Processing Time 0.032 seconds

광 마우스 센서를 이용한 이동로봇 좌표추정 (Coordinate Estimation of Mobile Robot Using Optical Mouse Sensors)

  • 박상형;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.716-722
    • /
    • 2016
  • Coordinate estimation is an essential function for autonomous navigation of a mobile robot. The optical mouse sensor is convenient and cost-effective for the coordinate estimation problem. It is possible to overcome the position estimation error caused by the slip and the model mismatch of robot's motion equation using the optical mouse sensor. One of the simple methods for the position estimation using the optical mouse sensor is integration of the velocity data from the sensor with time. However, the unavoidable noise in the sensor data may deteriorate the position estimation in case of the simple integration method. In general, a mobile robot has ready-to-use motion information from the encoder sensors of driving motors. By combining the velocity data from the optical mouse sensor and the motion information of a mobile robot, it is possible to improve the coordinate estimation performance. In this paper, a coordinate estimation algorithm for an autonomous mobile robot is presented based on the well-known Kalman filter that is useful to combine the different types of sensors. Computer simulation results show the performance of the proposed localization algorithm for several types of trajectories in comparison with the simple integration method.

A Simultaneous NIRS-EEG Study of Seizure in the Mouse Brain

  • Lee, Seung-Duk;Lee, Min-Ah;Koh, Dalk-Won;Kim, Beop-Min;Choi, Jee-Hyun
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.159-160
    • /
    • 2008
  • We measured hemodynamic responses of seizure in the mouse brain using frequencydomain near infrared spectroscopy (NIRS) and electroencephalogram (EEG). We adapted microfabricated optical holder for consistent contact of the optical fiber to the mouse brain. Our results show that the cerebral oxygenation and hemodynamics of mice can be stably monitored with EEG in the mouse brain.

  • PDF

이동로봇 속도 추정 성능 향상을 위한 광 마우스의 최적 배열 (Optimal Optical Mouse Array for High Performance Mobile Robot Velocity Estimation)

  • 김성복;김현빈
    • 제어로봇시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.555-562
    • /
    • 2013
  • This paper presents the optimal array of optical mice for the accurate velocity estimation of a mobile robot. It is assumed that there can be some restriction on the installation of two or more optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is derived, which maps the velocity of a mobile robot to the velocities of optical mice. Second, taking into account the consistency in physical units, the uncertainty ellipsoid is obtained to represent the error characteristics of the mobile robot velocity estimation owing to noisy optical mouse measurements. Third, a simple but effective performance index is defined as the inverse of the volume of the uncertainty ellipsoid, which can be used for the optimization of the optimal optical mouse placement. Fourth, simulation results for the optimal placement of three optical mice within a given elliptical region are given.

3개의 광 마우스를 이용한 강건한 광학식 거리주행계 (Robust Optical Odometry Using Three Optical Mice)

  • 김성복;김형기
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.861-867
    • /
    • 2006
  • This paper presents the robust mobile robot localization method exploiting redundant motion information acquired from three optical mice that are installed at the bottom of a mobile robot in a regular triangular form. First, we briefly introduce a low-cost optical motion sensor, HDNS-2000, and a commercial device driver development tools, WinDriver, to be used in this research. Second, we explain the basic principle of the mobile robot localization using the motion information from three optical mice, and propose the least squares based localization algorithm which is robust to the noisy measurement and partial malfunctioning of optical mice. Third, we describe the development of the experimental optical odometer using three PC optical mice and the user-friendly graphic monitoring program. Fourth, simulations and experiments are performed to demonstrate the validity of the proposed localization method and the operation of the developed optical odometer. Finally, along with the conclusion, we suggest some future work including the installation parameter calibration, the optical mouse remodelling, and the high-performance motion sensor adoption.

Demonstration of the Usefulness of Optical Coherence Tomography in Imaging a Mouse Tail Model of Lymphedema

  • Kim, Hui Dong;Kim, Dong Kyu;Chae, Yu-Gyeong;Park, Seok Gyo;Kim, Ghi Chan;Jeong, Ho Joong;Sim, Young-Joo;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.132-137
    • /
    • 2017
  • To investigate the usefulness of optical coherence tomography (OCT) for imaging lymphedema, we directly compared it to other histological methods in a mouse model of lymphedema. We performed detailed imaging of the lymphedema lesion on a mouse tail. We imaged the mouse tail in vivo with OCT and created histopathological samples. We constructed a spectrometer-based OCT system using a fiber-optic Michelson interferometer. The light was directed to 50:50 couplers that split the light into reference and sample arms. Backscattered light from a reference mirror and the sample produced an interference fringe. An OCT image of the lymphedema model revealed an inflammatory reaction of the skin that was accompanied by edema, leading to an increase in the light attenuation in the dermal and subcutaneous layers. Similar to OCT image findings, histological biopsy showed an inflammatory response that involved edema, increased neutrophils in epidermis and subdermis, and lymphatic microvascular dilatation. Furthermore, the lymphedema model showed an increase in thickness of the dermis in both diagnostic studies. In the mouse tail model of lymphedema, OCT imaging showed very similar results to other histological examinations. OCT provides a quick and useful diagnostic imaging technique for lymphedema and is a valuable addition or complement to other noninvasive imaging tools.

음성인식 및 영상처리 기반 멀티모달 입력장치의 설계 (Design of the Multimodal Input System using Image Processing and Speech Recognition)

  • 최원석;이동우;김문식;나종화
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.743-748
    • /
    • 2007
  • Recently, various types of camera mouse are developed using the image processing. The camera mouse showed limited performance compared to the traditional optical mouse in terms of the response time and the usability. These problems are caused by the mismatch between the size of the monitor and that of the active pixel area of the CMOS Image Sensor. To overcome these limitations, we designed a new input device that uses the face recognition as well as the speech recognition simultaneously. In the proposed system, the area of the monitor is partitioned into 'n' zones. The face recognition is performed using the web-camera, so that the mouse pointer follows the movement of the face of the user in a particular zone. The user can switch the zone by speaking the name of the zone. The multimodal mouse is analyzed using the Keystroke Level Model and the initial experiments was performed to evaluate the feasibility and the performance of the proposed system.

Gyro-Mouse for the Disabled: 'Click' and 'Position' Control of the Mouse Cursor

  • Eom, Gwang-Moon;Kim, Kyeong-Seop;Kim, Chul-Seung;Lee, James;Chung, Soon-Cheol;Lee, Bong-Soo;Higa, Hiroki;Furuse, Norio;Futami, Ryoko;Watanabe, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.147-154
    • /
    • 2007
  • This paper describes a 'gyro-mouse', which provides a new human-computer interface (HCI) for persons who are disabled in their upper extremities, for handling the mouse-click and mouse-move function. We adopted the artificial neural network to recognize a quick-nodding pattern of the disabled person as the gyro-mouse click. The performance of our gyro-mouse was evaluated by three indices that include 'click recognition rate', 'error in cursor position control', and 'click rate per minute' on a target box appearing at random positions. Although it turned out that the average error in cursor positioning control was 1.4-1.5 times larger than that of optical mouse control, and the average click rate per minute was 40% of the optical mouse, the overall click recognition rate was 93%. Moreover, the click rate per minute increased from 35.2% to 44% with repetitive trials. Hence, our suggested gyro-mouse system can be used to provide a new user interface tool especially for those persons who do not have full use of their upper extremities.

정다각형 배열의 광 마우스를 이용한 이동 로봇의 최소 자승 속도 추정 (Least Squares Velocity Estimation of a Mobile Robot Using a Regular Polygonal Array of Optical Mice)

  • 김성복;정일화;이상협
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.978-982
    • /
    • 2007
  • This paper presents the velocity estimation of a mobile robot using a regular polygonal array of optical mice that are installed at the bottom of a mobile robot. First, the basic principle of the proposed velocity estimation method is explained. Second, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. Third, for a given set of optical mouse readings, the mobile robot velocity is estimated based on the least squares solution to the obtained system. Finally, simulation results are given to demonstrate the validity of the proposed velocity estimation method.

광섬유 소산파를 이용한 면역 센서 제조 및 그 특성 (Fabrication of fiber-optic evanescent wave immunosensor and its measuring characteristics)

  • 최기봉;윤희주;차승희;최정도
    • 센서학회지
    • /
    • 제6권5호
    • /
    • pp.356-361
    • /
    • 1997
  • 광섬유 소산파 센서(fiber-optic evanescent wave sensor)를 제작하였다. 클래드층을 제거한 광섬유 코아 표면에 anti-mouse immunoglobulin G(IgG)를 결합시키고, 형광이 표지된 mouse IgG와의 반응을 직접적인 방법과 경쟁적인 방법을 통하여 측정하였다. 직접적인 방법과 경쟁적인 방법 모두 $1{\mu}g/m{\ell}$이하의 mouse IgG를 측정할 수 있는 감도를 얻을 수 있었다. Anti-mouse IgG는 단순 흡착 방법에 의하여 광섬유 코아 표면의 93.9%에 고정되었고 비특이적 결합반응을 제거하기 위하여 실시한 소혈청 알부민(bovine serum albumin : BSA)을 이용한 표면 코팅 효과는 없었다. Mouse IgG에 결합된 fluorescein의 비율이 높을수록 형광 발생량이 많았으나 관계는 직선적이지 않았다. 본 연구에서 제작된 광섬유 소산파 센서는 $1{\mu}g/m{\ell}$ 이하의 항원 항체 반응을 소산파 여기에 의한 형광량으로 측정할 수 있어 면역센서로의 응용이 가능할 것으로 판단된다.

  • PDF