Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.2.132

Demonstration of the Usefulness of Optical Coherence Tomography in Imaging a Mouse Tail Model of Lymphedema  

Kim, Hui Dong (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University)
Kim, Dong Kyu (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University)
Chae, Yu-Gyeong (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University)
Park, Seok Gyo (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University)
Kim, Ghi Chan (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University)
Jeong, Ho Joong (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University)
Sim, Young-Joo (Department of Physical Medicine and Rehabilitation, College of Medicine, Kosin University)
Ahn, Yeh-Chan (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University)
Publication Information
Current Optics and Photonics / v.1, no.2, 2017 , pp. 132-137 More about this Journal
Abstract
To investigate the usefulness of optical coherence tomography (OCT) for imaging lymphedema, we directly compared it to other histological methods in a mouse model of lymphedema. We performed detailed imaging of the lymphedema lesion on a mouse tail. We imaged the mouse tail in vivo with OCT and created histopathological samples. We constructed a spectrometer-based OCT system using a fiber-optic Michelson interferometer. The light was directed to 50:50 couplers that split the light into reference and sample arms. Backscattered light from a reference mirror and the sample produced an interference fringe. An OCT image of the lymphedema model revealed an inflammatory reaction of the skin that was accompanied by edema, leading to an increase in the light attenuation in the dermal and subcutaneous layers. Similar to OCT image findings, histological biopsy showed an inflammatory response that involved edema, increased neutrophils in epidermis and subdermis, and lymphatic microvascular dilatation. Furthermore, the lymphedema model showed an increase in thickness of the dermis in both diagnostic studies. In the mouse tail model of lymphedema, OCT imaging showed very similar results to other histological examinations. OCT provides a quick and useful diagnostic imaging technique for lymphedema and is a valuable addition or complement to other noninvasive imaging tools.
Keywords
Lymphedema; Optical coherence tomography; Mouse model; Animal experiment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. J. Ryan, "The lymphatics of the skin. in: the physiology and pathophysiology of the skin," London: Academic press 5, 1755-80 (1978).
2 B. Battistini, P. D'Orléans-Juste, and P. Sirois, "Endothelins: circulating plasma levels and presence in other biologic fluids," Lab. Invest. 68, 600-28 (1993).
3 R. Tabibiazar, L. Cheung, J. Han, J. Swanson, A. Beilhack, A. an, S. S. Dadras, N. Rockson, S. Joshi, R. Wagner, and S. G. Rockson, "Inflammatory manifestations of experimental lymphatic insufficiency," PLoS Med. 3, 1114-1139 (2006).
4 K. C. Johnson, A. G. Kennedy, and S. M. Henry, "Clinical measurements of lymphedema," Lymphat. Res. Biol. 12, 216-21 (2014).   DOI
5 A. Szuba and S. G. Rockson, "Lymphedema: classification, diagnosis and therapy," Vasc Med 3, 145-156 (1998).   DOI
6 N. L. Stout, L. A. Pfalzer, E. Levy, C. McGarvey, B. Springer, L. H. Gerber, and P. Soballe, "Segmental limb volume change as a predictor of the onset of lymphedema in women with early breast cancer," PM R 3, 1098-105 (2011).   DOI
7 S. A. Czerniec, L. C. Ward, K. M. Refshauge, J. Beith, M. J. Lee, S. York, and S. L. Kilbreath, "Assessment of breast cancer-related arm lymphedema--comparison of physical measurement methods and self-report," Cancer Invest 28, 54-62 (2010).   DOI
8 A. W. Stanton, C. Badger, and J. Sitzia, "Non-invasive assessment of the lymphedematous limb," Lymphology 33, 122-35 (2000).
9 J. M. Armer and B. R. Stewart, "A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population," Lymphat. Res. Biol. 3, 208-217 (2005).   DOI
10 S. Hayes, B. Cornish, and B. Newman, "Comparison of methods to diagnose lymphoedema among breast cancer survivors: 6-month follow-up," Breast Cancer Res. Treat. 89, 221-6 (2005).   DOI
11 W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-7 (2001).   DOI
12 B. A. Standish, V. X. Yang, N. R. Munce, L. M. Wong Kee Song, G. Gardiner, A. Lin, Y. I. Mao, A. Vitkin, N. E. Marcon, and B. C. Wilson "Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus," Gastrointest. Endosc. 66, 326-33 (2007).   DOI
13 T. Aoki, M. Rodriguez-Porcel, Y. Matsuo, A. Cassar, T. G. Kwon, F. Franchi, R. Gulati, S. S. Kushwaha, R. J. Lennon, L. O. Lerman, E. L. Ritman, and A. Lerman "Evaluation of coronary adventitial vasa vasorum using 3D optical coherence tomography--animal and human studies," Atherosclerosis 239, 203-8 (2015).   DOI
14 S. Ghanta, D. A. Cuzzone, J. S. Torrisi, N. J. Albano, W. J. Joseph, I. L. Savetsky, J. C. Gardenier, D. Chang, J. Zampell, and B. J. Mehrara, "Regulation of inflammation and fibrosis by macrophages in lymphedema," Am. J. Physiol. Heart Circ. Physiol. 308, 1065-77 (2015).   DOI
15 G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, "Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography," Circulation 107, 113-9 (2003).   DOI
16 M. Nakano, M. Vorpahl, F. Otsuka, M. Taniwaki, S. K. Yazdani, and A. V. Finn, "Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging," JACC Cardiovasc. Imaging 5, 71-82 (2012).   DOI
17 M. Kashiwagi, L. Liu, K. K. Chu, C. H. Sun, A. Tanaka, J. A. Gardecki, and G. J. Tearney, "Feasibility of the assessment of cholesterol crystals in human macrophages using micro optical coherence tomography," PLoS One 9, e102669 (2014).   DOI
18 L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, "Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography," Nat. Med. 17, 1010-4 (2011).   DOI
19 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).   DOI
20 D. E. Gary, "Lymphedema diagnosis and management," J. Am. Acad. Nurse Pract. 19, 72-78 (2007).   DOI
21 M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G Fujimoto, "Optical coherence tomography of the human retina," Archives of ophthalmology 113, 325-32 (1995).   DOI
22 B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, "Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice," J. Biomed. Opt. 13, 11003 (2008).   DOI
23 B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, "Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography," J. Biomed. Opt. 16, 076013 (2011).   DOI
24 F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M Rowland, P. A. Johnson, and S. A. Boppart, "Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer," IEEE Eng. Med. Biol. Mag. 29, 63-70 (2010).
25 R. A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, and D. D. Sampson, "Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer," Cancer Res. 70, 2579-2584 (2010).   DOI
26 S. A. McLaughlin, M. J. Wright, K. T. Morris, G. L. Giron, M. R. Sampson, J. P. Brockway, K. E. Hurley, E. R. Riedel, and K. J. Van zee, "Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements," J. Clin. Oncol. 26, 5213-9 (2008).   DOI
27 A. G. Warren, H. Brorson, L. J. Borud, and S. A. Slavin, "Lymphedema: a comprehensive review," Ann. Plast. Surg. 59, 464-72 (2007).   DOI
28 S. G. Rockson, "Lymphedema," Am. J. Med. 110, 288-95 (2001).   DOI
29 A. Szuba and S. G. Rockson, "Lymphedema: anatomy, physiology and pathogenesis," Vasc. Med. 2, 321-6 (1997).   DOI
30 J. Daroczy, "Pathology of lymphedema," Clin. Dermatol. 13, 433-44 (1995).   DOI