• Title/Summary/Keyword: optical measuring system

Search Result 509, Processing Time 0.038 seconds

A Study on Measuring the Shape of Transparent Objects using the Focal Area of Hologram Optical System (홀로그램 광학계의 초점영역을 이용한 투명 물체의 형상 측정에 관한 연구)

  • Byun, Jong-Hwan;Ryu, Young-Kee;Oh, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.600-602
    • /
    • 2005
  • Recently image display devices have become large and high quality. To control the qualities of the component, measurements of the shape and thickness of a plate glass has been required. In order to measure the shape of the specular objects, Non-Contact Optical Sensor using Hologram laser unit was proposed. The sensor has a optical system that is composed of a Hologram laser and objective lens used for CD Player, and the sensor showed high performance for measuring the shape and thickness of transparent plates. In the sensor, the temperature of the sensor body is controlled by TEC(Thermoelectric Cooler). In this paper, we proposed the measuring method to make better performance of sensor using focus error signal of a hologram laser unit. It can measure the shape and the thickness of transparent objects with the s-type focus error signal which is generated by the sensor while it goes to the object.

  • PDF

Optical Straightness Measuring System Using a Ball-lens (볼렌즈를 이용한 광학식 진직도 측정시스템)

  • Lee, Minho;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1133-1139
    • /
    • 2014
  • This paper proposes a simple method to improve a sensitivity of a straightness measurement system for a linear stage, which is applied to a system based on a geometric optic method. An optical system for this method is composed of a corner-cube retro-reflector, a ball-lens and a twodimensional position sensitive detector (2D PSD). The effectiveness of the proposed method was examined theoretically, and verified experimentally using a prototype measurement system. The results show that the measuring sensitivity was dependent on the size of the ball-lens and the setup position of PSD from the ball-lens, and that the proposed method is efficient method to improve the measuring sensitivity.

Recognition System of Slope Condition Using Image and Laser Measuring Instrument (영상 및 레이저 계측기를 통한 경사면 상황인식 시스템)

  • Han, Sang-Hun;Han, Youngjoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.219-227
    • /
    • 2014
  • Natural disasters such as a ground collapse and a landslide have broken out due to the climate change of the Korea and the reckless expansion of cities and roads. The climate changes and the reckless urbanization have made the ground weak. Thus, it is important to keep a close eye on the highly weakened landslide and to prevent its natural disasters. In order to prevent these disasters, this paper presents a system of recognizing the road slide condition by measuring the displacements using laser scanner instrument. The previous system of monitoring the road slide has some problems as inaccurate recognition due to using only images from a camera, or expensive system such as artificial satellites and aircraft systems. To solve this problem, our proposed system uses the 3D range data from the laser scanner for measuring the accurate displacement of the road slide and optical flows from the Lucas-Kanade algorithm for recognizing the road slide in the image.

Optical Ozone Monitor Using UV Source

  • Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.49-52
    • /
    • 2003
  • Two types of ozone monitors using UV absorption method were tried in consideration of cost of the monitor and precision in measuring. The high concentration ozone monitor for high concentration real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source, a photo multiplier tube as UV detector and signal processing unit for the most part. This structure could be very useful for low price high concentration ozone monitor due to simple system structure and fairly good monitoring characteristics. The developed system showed good linear output characteristics to ozone in the measuring concentration range of 0.05 and 2 wt.%. For accuracy ambient ozone monitoring in ambient in ppm level, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit in brief speaking was proposed our study for the first time in the world. The developed system showed good linearity and sensitivity in relative low measuring range between 10ppm and 10,000ppm, and showed some feasibility of high resolution ozone monitor using CCD array as photodetector.

  • PDF

Development of Structured Light 3D Scanner Based on Image Processing

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.49-58
    • /
    • 2019
  • 3D scanners are needed in various fields, and their usage range is greatly expanded. In particular, it is being used to reduce costs at various stages during product development and production. Now, the importance of quality inspection in the manufacturing industry is increasing. Structured optical system applied in this study is suitable for measuring high precision of mold, press work, precision products, etc. and economical and effective 3D scanning system for measuring inspection in manufacturing industry can be implemented. We developed Structured light 3D scanner which can measure high precision by using Digital Light Processing (DLP) projector and camera. In this paper, 3D image scanner based on structured optical system can realize 3D scanning system economically and effectively when measuring inspection in the manufacturing industry.

Four Degree-of-Freedom Geometric Error Measurement System with Common-Path Compensation for Laser Beam Drift

  • Qibo, Feng;Bin, Zhang;Cuifang, Kuang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • A precision four-degree-of-freedom measurement system has been developed for simultaneous measurement of four motion errors of a linear stage, which include straightness and angular errors, The system employs a retro-reflector to detect the straightness errors and a plane mirror to detect the angular errors. A common-path compensation method for laser beam drift is put forward, and the experimental results show that the influences of beam drift on four motion errors can be reduced simultaneously. In comparison with the API 5D laser measuring system, the accuracy for straightness measurement is about ${\pm}1.5{\mu}m$ within the measuring range of ${\pm}650{\mu}m$, and the accuracy for pitch and yaw measurements is about ${\pm}1.5$ arc-seconds within the range of ${\pm}600$ arc-seconds.

System Design and Camera Calibration of Slit Beam Projection for Maximum Measuring Accuracy (슬릿광 3차원 형상측정에서 측정분해능 최적화를 위한 시스템설계 및 카메라보정)

  • 박현구;김명철;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1182-1191
    • /
    • 1994
  • This paper presents an enhanced method of slit beam projection intended for the rapid measurement of 3-dimensional surface profiles of dies and molds. Special emphasis is given to optimizing the design of optical system so that the measuring accuracy can be maximized by adopting two-plane camera calibration together with sub-pixel image processing techniques. Finally, several measurement examples are discussed to demonstrate that an actual measuring accuracy of $\pm$ 0.2 mm can be achieved over the measuring range of 500 mm{\times}300mm{\times}200mm$.

Development of high sensitivity pressure sensor using optical fiber (광섬유를 이용한 고감도 압력센서 개발)

  • 이권형;조경재;김현철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.478-481
    • /
    • 1995
  • This paper presents the system demonstrator for an optical fiber sensor system developed as a technological evaluator suitable for generic sensric sensing applications. The new type of fiber-optic sensor employed a diaphragm displacement transforms pressure into optical intensity. Form this sensing technique, we can know the variation of source intensity, the loss of a optical fiber, and the reflectivity of the diaphragm surface. Experimental results are applied to the low-pressure transducer suitable for measuring miniature pressure.

  • PDF

Development of Optical Probe to Inspect Micron Scale Part in Micro-Factory (Micro-Factory 공정간 마이크로 부품 검사 프로브 개발)

  • Kim Geehong;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.424-428
    • /
    • 2005
  • This paper shows a non-contact optical method to inspect micron scale parts which will be manufactured in micro-factory system. This inspection system should have some characteristics like a small size, flexibility, and high measuring speed. In the viewpoint of measuring capabilities, it also has resolution under micron scale with measuring range over millimeter scale. Two methods will be presented in this paper, one is Moire and the other is white-light scanning interferometry. Also some experimental results will be presented to show the possibilities of the proposed inspection system.

  • PDF

Analysis of System Performance Degradation Using Sinusoidally Modulated Signal in Optical Fiber Communication Systems

  • Lee, Jong-Hyung;Han, Dae-Hyun;Park, Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • The response of a single-mode fiber to a sinusoidally modulated input has been studied to see its utility in measuring system performance in the presence of fiber nonlinearities. The sinusoidally modulated signal models an alternating bit sequence of ones and zeros in on-off keying. The sinusoidal response of normally dispersive fiber shows a strong correlation with eye-opening penalty (EOP) over a wide range of the nonlinearity parameter N (0.1 < N$^2$< 100). This result implies that the measurement of the sinusoidal response can be an alternate way of measuring EOP without having a long sequence of randomly modulated input bits. But in the anomalous dispersion region, the sinusoidal response has a much more limited range of application to estimate system performance.