• Title/Summary/Keyword: optical linear encoder

Search Result 17, Processing Time 0.026 seconds

Detection of Absolute Position for Magneto-Optical Encoder Using Linear Table Compensation (선형 테이블 보상법을 이용한 마그네틱-옵티컬 엔코더의 절대 위치 검출에 관한 연구)

  • Kim, Seul Ki;Kim, Hyeong Jun;Lee, Suk;Park, Sung Hyun;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2016
  • This paper presents the development of a magneto-optical encoder for higher precision and smaller size. In general, optical encoders can have very high precision based on the position information of the slate, while their sizes tend to be larger due to the presence of complex and large components, such as an optical module. In contrast, magnetic encoders have exactly the opposite characteristics, i.e., small size and low precision. In order to achieve encoder features encompassing the advantages of both optical and magnetic encoders, i.e., high precision and small size, we designed a magneto-optical encoder and developed a method to detect absolute position, by compensating for the error of the hall sensor using the linear table compensation method. The performance of the magneto-optical encoder was evaluated through an experimental testbed.

A New Error Compensation Method in Linear Encoder Using a Phase-Modulated Grating (위상 변환 격자를 이용한 선형 엔코더의 오차 보상법)

  • Song, Ju-Ho;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.147-154
    • /
    • 2000
  • A new hardware compensation method reducing displacement measurement errors, caused by tilt of index scale in moire linear encoders, has been developed. In conventional moire linear encoders, the detectors are aligned perpendicular to the line of moire fringes this structure is very sensitive to an unwanted tilt of the gratings. In this paper, a newly designed grating, called a phase-modulated grating, is developed to compensate for non-orthogonal errors. By using the phase-modulated grating instead of a conventional index, it is possible to reduce non-orthogonal errors of moire linear encoders.

  • PDF

High resolution Linear Encoder Using Interference Fringe (레이저의 간섭무늬를 이용한 리니어 엔코더에 관한 연구)

  • 박윤창
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.130-135
    • /
    • 1999
  • The main scale of linear encoder greatly effects on the precision of displacement measurement. Especially when needing the long range measurement the length of main scale should be increased accordingly. In this paper we propose a linear encoder that uses laser interference pattern as main scale for long range measurement. The linear encoder is similar to Michelson interferometer excepting that the reference mirror is tilted so as to obtain interference fringe pattern and a grating panel is attached on a quadratic photo diodes. Four kinds of grating having phase difference of 0. $\pi$/4, $\pi$/2, 3$\pi$/4 are arranged on the panel. The experimental results show that signals of quadratic photo diode A, B, {{{{ {-}atop {A } }}}} and {{{{ {- } atop {B } }}}} are cosine wavelike and successive signals have phase difference of $\pi$/4 each other. So the proposed method can achieve improved measurement resolution.

  • PDF

Measuring Method of In-plane Position Based On Reference Pattern (레퍼런스 패턴 기반 면내 위치 측정 방법)

  • Jung, Kwang Suk
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Generally, in-plane position of moving object is measured referring to the reference pattern attached to the object. From optical camera to magnetic reluctance probe, there are many ways detecting a variation of the periodical pattern. In this paper, the various operating principles developed for in-plane positioning are reviewed and compared each other. And, a novel method measuring large rotation as well as x, y linear displacements is suggested, including a detailed description of the overall system layout. It is a modified version of the surface encoder, which is a robust digital measuring method. From the surface encoder, the rotation of an object is measured indirectly through a compensated input of optical servo and independently of linear displacements. So, the operating range can be extended simply by enlarging the reference pattern, without magnifying the decoding units.

  • PDF

A Study on the Linear Encoder for the high performance Oil Off Angle control of SRM (SRM의 고성능 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구)

  • 이동희;박성준;이명재;한성현;백운보;이희섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.190-198
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, witch are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

Position Detecting Modeling of Linear Switched Reluctance Motor(LSRM) for Railway Vehicles (철도차량용 선형전동기(LSRM) 위치검출 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1907-1912
    • /
    • 2016
  • In fact, in order to obtain good performances and low torque ripple, a high-resolution sensor is needed, which is costly and usually needs a special construction for the machine. So researchers are becoming aware of their cost and are exploring the possibility of cost reduction. Information of rotor position is necessary to drive Linear Switched Reluctance Motor(LSRM). Therefore, linear optical encoder is used to detect a mover position. Normally, since the price of encoder, which is used for linear motor is relatively higher than the one used for rotory motor and the cost of additional equipment increases with the length of motor. This is not always appropriate, considering economical efficiency in case of using the linear optical encoder. As a results, LSRM has a great part for the total cost. Therefore, in this paper, we propose LSRM position detecting modeling with reflective type photo-sensor. Additionally, we have investigated the possibility of the reduced position sensor for LSRM drives with advanced control technique. To certify the overall characteristics of the proposed method, a simulation using PSIM software has been carried out and the informative results are displayed.

Linear Switched Reluctance Motor Position Detecting Technique Using Reflective Type Photo-sensors (반사형 광센서를 이용한 LSRM 위치검출 방법)

  • Kim S. J.;Yoon Y. H.;Jung G. H.;Won C. Y.;Kang D. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.23-27
    • /
    • 2004
  • Information of rotor position is necessary to drive Linear Switched Reluctance Motor(LSRM). Therefore, linear optical encoder is used to detect a mover position. Normally, since the price of encoder, which is used for linear motor is relatively higher than the one used for rotory motor and the cost of additional equipment increases with the length of motor. As a results, LSRM has a great part for the total cost. In this paper, as using reflective type photo-sensors, it replaced the expensive linear encoder.

  • PDF

High Performance On Off Angle Control of SRM Using Linear Encoder (선형 엔코더를 이용한 SRM의 고정밀 온, 오프 각 제어)

  • Lee, Yeong-Jin;Park, Seong-Jun;Park, Han-Ung;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.61-67
    • /
    • 2000
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angle is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, which are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper. It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

The Study on the New Encoder for High Performance Exciting Angle Control (SRM의 고정도 여자각 제어를 위한 새로운 엔코더)

  • Jung, Keum-Young;Park, Sung-Jun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.319-326
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is important to synchronize the stator phase excitation with the rotor position; therefore, the information about rotor position is essential. Generally, optical encoders or resolvers are used to provide the information. However, these sensors are expensive and are not suitable for high-speed operation. The accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. In the high-speed region, switching angles are fluctuated back and forth out of the preset value, which is caused by the sampling period of the microprocessor. In this paper, a low cost linear encoder suitable far the practical and stable SRM drive is proposed and also the control algorithm to generate the switching signals using a simple digital logic is presented. The validity of the proposed linear encoder with a proper logic controller is verified through the experiments.

Study on the Linear, Encoder for high Performance On Off control of SRM (SRM의 고정도 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구)

  • Hong, Jeng-Pyo;Park, Sung-Jun;Hong, Sun-Ill;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.984-987
    • /
    • 2000
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In the paper, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper. It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF