• Title/Summary/Keyword: optical layer

Search Result 2,249, Processing Time 0.042 seconds

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

An Iterative Algorithm to Estimate LIDAR Ratio for Thin Cirrus Cloud over Aerosol Layer

  • Wang, Zhenzhu;Liu, Dong;Xie, Chenbo;Zhou, Jun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.209-215
    • /
    • 2011
  • A new iterative algorithm is developed to estimate LIDAR ratio for a thin cirrus cloud over an aerosol layer. First, the thin cirrus cloud is screened out and replaced by a modeled LIDAR signal and the extinction coefficients of the aerosol layer are derived using the Fernald backward method. These aerosol coefficients are referred as the "actual values". Second, the original LIDAR signal which includes the thin cirrus cloud is also inverted by the Fernald backward method down to the aerosol layer but using different LIDAR ratio for the thin cirrus cloud. Depending on the different assumptions about the LIDAR ratio of the thin cirrus cloud, different sets of aerosol extinction can be derived. The "actual values" which are found in the first step can be used to constrain this iterative progress and the correct LIDAR ratio of the thin cirrus cloud can be found. The detailed description of this method and retrieval examples are given in the paper. The cases compared with other methods are presented and the statistical result is also shown and agrees well with other studies.

Aero-Optical Diagnostic Technique for the Hypersonic Boundary Layer Transition on a Flat Plate

  • Li, Ruiqu;Gong, Jian;Bi, Zhixian;Ma, Handong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2015
  • A new cross disciplinary conception of transitional aero-optics is built up during analyzing and measuring the linkage between the hypersonic boundary layer transition on a flat plate and the jittering characteristics of the small-aperture beam through that boundary layer. Based on that conception, the Small-Aperture Beam Technique (SABT) and high-speed Imaging Camera System (ICS) used in aero-optical studies are considered as new techniques for the assessment of the hypersonic transition in the boundary layer on a flat plate. In the FD-20 gun tunnel, for the free stream parameters with Mach number of 8 and unit Reynolds number of $1{\times}10^7$ (1/m), those two optical techniques are used to measure the jitter of the small-aperture beam. At the same free stream parameters, the distribution of the heat transfer along the centerline of the flat plate is also measured by the thin film resistance gauge technique. The results show the similarity of the increase trend between the heat transfer and the jitter of the small-aperture beam in the transitional region. It helps us to surmise that it may be feasible to diagnose the transition in a hypersonic boundary layer on a flat plate by means of those above optical techniques.

The Design of Abstract Layer for Motion Capture System (모션캡처 시스템을 위한 추상레이어의 설계)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.25-32
    • /
    • 2007
  • In this paper, the abstract layer for motion capture system is designed and implemented to meet the various hardware and different capturing method. The abstract layer can offer the unified programming by providing device independent API(Application Programming Interface). The device drivers of the optical system and mechanical system are emulated to verify the designed abstract layer. The optical system employs the AOA Ole while the mechanical system uses BVH file. An application program is written to call the abstract layer functions to drive both optical and mechanical drivers and receive the frame data, simulated motion data, that are displayed sequentially on the computer screen by utilizing Direct3D.

  • PDF

Effective Refractive Index of Dye-Sensitized Solar Cell Using Transmittance and Reflectance Measurements (투과 및 반사율 측정을 이용한 염료감응태양전지의 유효 굴절률 모델링)

  • Kim, Hyeong Seok;Lee, Joocheol;Shin, Myunghun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2015
  • Optical modeling and characterization of transparent dye-sensitized solar cells (DSC) are presented to design and estimate DSC devices numerically. In order to model the inhomogeneous active layer of DSC, the porous structure of titanium oxide ($TiO_2$) and dye mixture, we prepared films consisting of layer by layer of the DSC's basic materials sequentially, and characterized the optical parameters of the films with the effective refractive index, which was extracted from the transmittance and reflectance measurements in ultra violet to near infra-red range. By using the effective refractive index, we made the optical model for DSC, and demonstrated that the optical model based on effective refractive index can be used to design and evaluate the performance of transparent-type DSC modules.

Numerical Study on Optical Characteristics of Multi-Layer Thin Film Structures Considering Wave Interference Effects (파동간섭효과를 고려한 다층 박막 구조의 광학특성에 대한 수치해석 연구)

  • Shim, Hyung-Sub;Lee, Seong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.272-277
    • /
    • 2006
  • The present study is devoted to investigate numerically the optical characteristics of multi-layer thin film structures such as $Si/SiO_2\;and\;Ge/Si/SiO_2$ by using the characteristics transmission matrix method. The reflectivity and the absorptivity rate for thin film structures are estimated for different incident angles of rays and various film thicknesses. In addition, the influence of wavelength on optical characteristics related to complex refractive index is examined. It is found that such wave-like characteristics are observed in predicting reflectivities and depends mainly on film thickness. Moreover, the present study predicts the film thickness for ignoring wave interference effects, and it also discusses the fundamental physics behind optical and energy absorption characteristics appearing in multi-layer thin film structures.

Side-Coupled Asymmetric Plastic Optical Fiber Coupler for Optical Sensor Systems

  • Kim, Kwang-Taek;Kim, Deok-Gi;Hyun, Woong-Keun;Hong, Ki-Bum;Im, Kie-Gon;Baik, Se-Jong;Kim, Dae-Kyong;Choi, Hyun-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • This paper reports a side-coupled asymmetric $1{\times}2$ plastic optical fiber coupler for an optical sensor system. The dependence of the optical power coupling ratio on the coupling angle and refractive index of the adhesion layer in both the forward and backward directions was examined based on the geometrical optics. It was confirmed experimentally that the coupling ratios can be optimized by controlling the coupling angle and refractive index of the adhesion layer. A maximum forward coupling efficiency > 93% was achieved.

1-Axis Actuator for Compensating Focus Error and SA due to the Variation of Cover-Layer Thickness in Small-Form-Factor Optical Disk (초소형 광디스크의 보호층 두께 편차 보상용 1축 엑츄에이터)

  • Park, Jin-Moo;Hong, Sam-Nyol;Choi, In-Ho;Kim, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.227-231
    • /
    • 2004
  • Technological advance in information technology has sparked the necessity of small form factor (SFF) optical disk for mobile devices. Small form factor optical disk is highly anticipated to be a next generation storage device because it can be used for a cost-effective way compared with solid state memory. For the application to the 5 mm height small-form-factor optical disk drive, we have presented an optical flying head and swing arm actuator. In this study, we propose a small 1-axis actuator for compensating ficus error and SA due to the variation of cover-layer thickness in the cover-layered small optical disk. The main design issues of the 1-axis actuator are the realization of compact structure and the new support structure of the actuator: Finally, the compensating principle and performance of the 1-axis actuator will be explained.

  • PDF

A Study on Bumping of Micoro-Solder for Optical Packaging and Reaction at Solder/UBM interface (광패키징용 마이크로 솔더범프의 형성과 Contact Pad용 UBM간의 계면 반응 특성에 관한 연구)

  • Park, Jong-Hwan;Lee, Jong-Hyun;Kim, Yong-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.332-336
    • /
    • 2001
  • In this study, the reaction at UBM(Under Bump Metallurgy) and solder interface was investigated. The UBM employed in conventional optical packages, Au/Pt/Ti layer, were found to dissolve into molten Au-Sn eutectic solder during reflow soldering. Therefore, the reaction with different diffusion barrier layer such as Fe, Co, Ni were investigated to replace the conventional Pt layer. The reaction behavior was investigated by reflowing the solder on the pad of the metals defined by Cr layer for 1, 2, 3, 4, and 5 minutes at $330^{\circ}C$. Among the metals, Co was found to be most suitable for the diffusion barrier layer as the wettability with the solder was reasonable and the reaction rate of intermetallic formation at the interface is relatively slow.

  • PDF

Magneto-Optical Kerr Effect Enhancement Methods for Nanostructures

  • Kim, D.H.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2009
  • Herein, the Magneto-Optical Kerr Effect (MOKE) signal enhancement in nanostructures in investigated. It is well known that the MOKE signals of ferromagnetic thin films are enhanced with an additional dielectric layer due to multiple reflections. The MOKE signal is modulated with the additional dielectric layer thickness and is at a maximum when reflectivity is at a minimum. This is not always true in the nanostructures due to the contribution from the non-magnetic substrate portion, especially when substrate reflectivity is minimized and the dependence of the additional dielectric layer thickness for the nanostructure is changed in the case of the continuous thin film. We showed that the MOKE signal for nanostructures could be enhanced with a properly designed, dielectric layer in addition to the anti-reflection coated substrates.