• Title/Summary/Keyword: optical interference

Search Result 621, Processing Time 0.026 seconds

Peak-to-zero modulation of optical absorption via electrically controllable quantum interference

  • Lee, Byoung-Ho;Kim, Kyoung-Youm
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.33-36
    • /
    • 2002
  • We propose a modulation scheme of optical absorption in a coupled asymmetric quantum well (QW) structure via electrically controllable quantum interference. It is based on the parallel-perpendicular energy coupling effect. We show that by applying an external electric Held in the parallel direction (to the QW layers), we can obtain a maximum (peak-type) absorption at a specific wavelength where absorption cancellation would occur due to electrically induced transparency without such an external Held .

Proposal of optical subscriber access network to eliminate multiple access interference using 2 dimensional optical frequency and time domain CDMA method (동시 사용자의 간섭을 제거한 광 주파수 및 시간 영역 광 CDMA를 이용한 광 가입자 망의 제안)

  • Park Sang-Jo;Kim Bong-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.161-166
    • /
    • 2006
  • In this paper, we propose optical subscriber access network to eliminate multiple access interference using 2 dimensional(D) optical frequency and time domain CDMA method. We have numerically analyzed the characteristics of proposed system. It is seen that the excess intensity noise is the major limiting factor to the system. Also it is seen that the number of simultaneous subscribers is four times as large as the conventional ID optical system under the same bit error ratio.

Performance Improvement in Optical CDMA System Under The Presence of Beat Noise Using a Cancellation Method

  • Benaree, Warut;Noppanakeepong, Suthichai;Leelaruji, Nipha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1206-1210
    • /
    • 2005
  • This paper presents performance improvement in optical CDMA system under the presence of beat noise using a cancellation technique. Optical fibers and atmospheric optical communications have been proposed the connection between base stations and central station. The optical signal beat noise is due to interference between lightwave, many optical waves are simultaneously incident on each receiver photodiode. Since the photodiode acts as a square-law detector, beat noise can occur in the receiver. While A two-stage cancellation technique is analyzed and verified via simulation employed here because of its system simplicity. By using the random ingredients of all user signals are estimated, the beat noise is rebuilt and removed from the intended signal. In addition to cancellation technique cancel the inherent multiuser interference (MUI) in CDMA system and nonlinear distortion (NLD) in optical system. It is performed at the receiver of the central station where the random ingredients of all user signals are estimated and the MUI and the NLD are rebuilt and removed from the received signal. The validity of the cancellation technique is theoretically analyzed and shown by numerical results. The increasing of capacity in two stage cancellation are obtained.

  • PDF

Vector analysis for multimode-interference power splitter with an arbitrary splitting ratio (임의 분배 비율의 다중모드간섭 광전력 분배기에 대한 벡터 해석법)

  • 김진희;이상선;송석호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We propose a vector analysis for designing multimode-interference power splitters, which can show an arbitrary splitting ratio. Power splitting is a fundamental characteristic in integrated optical circuits and its value would be multiplied for many applications if the splitting ratio could be selected freely. Since the vector analysis utilizes a graphical method based on the previously-reported mathematical results of multimode interference, it shows an excellent advantage especially for designing power splitters with an arbitrary splitting ratio.

Performance of Interference Mitigation using Optical Relay and Optical Beamforming in Visible Light Communication Systems (가시광 통신 시스템에서 Optical Relay와 Optical Beamforming을 통한 간섭 완화 성능)

  • Hwang, Yu Min;Kim, Yoon Hyun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.63-68
    • /
    • 2012
  • The VLC (visible light communication) system is communication technology using visible rays (RGB) that come out in LED device. It is energy curtailment effect and possible in ubiquitous network service applications. Also, VLC system has the above advantage about that the communication throughout the whole room is enabled by high power lighting and lighting equipment with white colored LED which are easy to install and have good outward appearance. However, the signal detection performance for the receiver near the network of transmitter boundary is severely degraded and the transmission efficiency decreased due to the influence of the interference signal from the adjacent networks. In this paper, we propose an interference mitigation method with optical relay and optical beamforming scheme in VLC systems, and evaluate the reception performance. For the system BER, the proposed system demonstrates the performance enhancement compared to the not using the optical relay and optical beamforming scheme, and SNR performance gain and higher channel capacity is achieved.

Design of optical power splitters and couplers composed of deeply etched multimode interference section (깊이 식각된 다중모드 간섭 영역으로 구성된 광전력 분배기 및 결합기의 설계)

  • 김정욱;정영철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.62-72
    • /
    • 1997
  • The optical power splitter/couplers based on MMI(multimode interference) in GaAs/AlGaAs are studied. We presetn a design of optical power splitter/couplers, which have deeply etched multimode waveguide. The properties and fabrication tolerance on the etching depth, multimode waveguide width are simulatedusing a FD-BPM (finite difference beam propgation method). Proposed 1*N optical of designed device is 0.7dB smaller than the optical power splitter with a shallowly etched MMI section. For 0.5dB excess loss, the predicted fabrication tolerance is 0.6.mu.m on the multimode waveguide width of the 14 optical power splitter with a deeply etched MMI section. Also excess loss and uniformity of poposed 32*32 optical power coupler are below 0.3dB. The excess loss of proposed 32*32 optical power coupler is 2dB smaller than the optical power coupler with a shallowly etched MMI section. It is shown that the optical power splitters/couplers with a deeply etched mMI section have low loss, good uniformity, and improved fabriction tolerance.

  • PDF

Fabrication of multi-mode interference $1\times4$ optical power splitter using glass integrated optics (유리집적광학을 이용한 다중모드간섭 $1\times4$ 광파워 분리기 제작)

  • 강동성;전금수;장명호;반재경
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.418-422
    • /
    • 2000
  • In this paper, we have modeled and fabricated a mutimode interference (MMI) $1\times4$ optical power splitter using finite-difference beam propagation method and $Ag^+-Na^+$ ion-exchanged method in BK7 glass. The power splitting ratio of the fabricated MMI $1\times4$ optical power splitter shows 0.46 dB..46 dB.

  • PDF

Binary Nonlinear Joint Transform Correlator with Sinusoidal Iterative Filter in Spectrum Domain

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • The joint transform correlator (JTC) has been the best known technique for pattern recognition and identification. This paper proposes a new technique of fringe adjustment by adopting a sinusoidal amplitude-modulated iterative filter convolved with an interference fringe pattern in the joint power spectrum (JPS) domain. The comparison of our new technique and other techniques is presented to show that the newly proposed technique can successfully improve both the correlation peaks and the peak signal-to-noise ratio (PSNR). Simulated results of enhanced interference fringes are also presented.