• Title/Summary/Keyword: optical energy gap

Search Result 456, Processing Time 0.026 seconds

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

The improvement of the stability of hydrogenated amorphous silicon (수소화된 비정질 실리콘박막의 안정성향상에 관한 연구)

  • 이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.51-54
    • /
    • 1999
  • Hydrogenated amorphous silicon (a-Si:H) films are fabricated by Argon radical annealing (ArRA). The deposition rate of continuously deposited a-Si:H film is 1.9 $\AA$/s. As ArRA time are increased to 0.5 and 1 minute, the deposition rate are increased to 2.8 $\AA$/s and 3.3 $\\AA$/s. The deposition rate of a-si:H films with 2 and 3 minutes ArRA time are 3.3 $\AA$/s. As the ArRA time is increased, the optical band gap and the hydrogen contents in the a-Si:H films are increased and slightly decreased. The light-induced degradation of ArRA treated a-Si:H films are less than that of continuously deposited a-Si:H film. The dark conductivity and the conductivity activation energy ($E_a$) of continuously deposited a-Si:H film are decreased to 1/25 in room temperature and increased to 0.09eV By 1 hour light soaking, respectively. The dark conductivity and $E_a$ of ArRA treated a-Si:H film decreased to 1/3 in room temperature and increased to 0.03eV by 1 hour light soaking, respectively. We could improve the stability of a-Si:H films under the light soaking by ArRA technique and discussed the microscopic process of ArRA technique.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

Growth and study on photocurrent of valence band splitting for AgGaSe2 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 AgGaSe2 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Lee, Gyoan-Gyu;Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.397-405
    • /
    • 2006
  • Single crystal $AgGaSe_{2}$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_{2}$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_{2}$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}10^{16}/cm^{3}$, $139cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $AgGaSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=1.9501 eV-($8.79{\times}10^{-4}{\;}eV/K)T^{2}$/(T+250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_{2}$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $AgGaSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n=1.

Growth of ZnO thin film by pulsed laser deposition and photocurrent study on the splitting of valance band (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.160-168
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_{2}O_{3}$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_{2}O_{3}$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}1016cm^{-3}$ and $299cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=3.3973 eV-($2.69{\times}10^{-4}$ eV/K)$T^{2}$/(T+463K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{6}$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n = 1.

Phase Change Characteristics of Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) Thin Film for PRAM (PRAM을 위한 Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) 박막의 상변환 특성)

  • Shin, Jae-Ho;Baek, Seung-Cheol;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.404-409
    • /
    • 2011
  • An amorphous $Ge_2Sb_2Te_5$ thin film is one of the most commonly used materials for phase-change data storage. In this study, $Au_x(Ge_2Sb_2Te_5)_{1-x}$ thin film amorphous-to-crystalline phase-change rate were evaluated in using 658 nm laser beam. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-17 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the $Ge_2Sb_2Te_5$ film is largely improved by adding Au.

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Effect of Ga Addition on the Electrical and Structural Properties of (Zn,Mg)O Transparent Electrode Films (Ga 첨가량이 (Zn,Mg)O 투명전극 막의 전기적, 결정학적 특성에 미치는 영향)

  • Suh, Kwang-Jong;Wakahara, Akihiro;Yoshida, Akira
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.491-495
    • /
    • 2005
  • (Zn,Mg)O (ZMO) thin films doped with Ga $(0\~0.03mol\%)$ in the target source were prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$, and the effect of Ga contents on the properties of the electrical, optical and crystal properties of the deposited films was investigated. From X-ray diffraction patterns, ZMO film doped with $0.02 mol\%$ Ga showed crystal structure with c-axis preferred orientation, showing only the (0002) and (0004) diffraction peaks. In contrast, ZMO film doped with $Ga=0.03 mol\%$ showed a randomly oriented crystal structure. All the samples were highly transparent, showing the transmittance values of above $85\%$ in the visible region. For all the Ga doped ZMO films, the value of energy band gap was found to be about 3.5 eV, regardless of their Ga contents. From the Hall measurements, the resistivity and the carrier density for the ZMO film doped with $0.01 mol\%$ Ga were about $5\times10^{-4}\Omega-cm$ and $2\times10^{21}cm^{-3}$, respectively.

Self-Assembled ZnO Hexagonal Nano-Disks Grown by RF Sputtering

  • Jeong, Eun-Ji;Kim, Ji-Hyeon;Kim, Su-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.461-461
    • /
    • 2013
  • Over the last decade, zinc oxide (ZnO) thin films have attracted considerable attention owing to large band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature [1-3]. Recent interest in ZnO related researches has been switched into the fabrication and characterization of low-dimensional nanostructures, such as nano-wires and nano-dots that can be applicable to manufacture the optoelectronic devices such as ultraviolet lasers, light-emitting-diodes and detectors. Since the optical properties of ZnO nano-structures might be distinct from those of bulk materials or thin films, the low-dimensional phenomena should be examined further. In order to utilize such advanced optoelectronic devices, one of the challenges is how to control the surface state related emissions that are drastically increased with increasing the density of the nano-structures and the surface-to-volume ratio. This paper reports the synthesis and characterization of self-assembled ZnO hexagonal nano-disks grown by radio-frequency magnetron sputtering. X-ray diffraction data and scanning electron microscopy data showed that ZnO hexagonal nano-disks were nucleated on top of the flat surfaces as the film thickness reached to 1.56 ${\mu}m$ and then the number of nano-disks increased with increasing the film thickness. The lateral size of hexagonal nano-disks was ~720 nm and height was ~74 nm. The strong photo luminescence spectra obtained at 10 K was also observed, which was assigned to a surface exciton emission at 3.3628 eV arising from the surface sites of hexagonal nano-disks.

  • PDF