• 제목/요약/키워드: optical conductivity

검색결과 377건 처리시간 0.023초

RF 마그네트론 스퍼터링법에 의해 PET 기판 위에 증착된 ITO 박막의 특성에 대한 산소 분압의 영향 (Effects of oxygen partial pressure on the properties of indium tin oxide film on PET substrates by RF magnetron sputtering)

  • 김선태;김태규;조현;김진곤
    • 한국결정성장학회지
    • /
    • 제24권6호
    • /
    • pp.252-255
    • /
    • 2014
  • ITO(indium tin oxide) 박막을 RF 마그네트론 스퍼터링법에 의해 산소 분압을 0에서 $6{\times}10^{-5}$ Pa로 변화시킨 조건 하에서 PET 기판 위에 증착하였고, 산소 분압에 따른 ITO 박막의 전기적, 광학적 특성과 결정성의 변화를 조사하였다. 산소 분압이 $1{\times}10^{-5}$ Pa 이하에서는 증착된 ITO 박막은 비정질 구조를 가지는 반면에 $2{\times}10^{-5}$ Pa 이상에서는 결정질임을 확인하였다. 이러한 구조적 변화와 더불어 전하 캐리어 농도와 비저항이 증가하였다. 산소 분압이 $4{\times}10^{-5}$ Pa에서 최소 비저항($9.8{\times}10^{-4}{\Omega}{\cdot}cm$)을 얻을 수 있었다. ITO/PET 박막의 광투과율도 산소 분압이 증가함에 따라 증가하였으며 산소 분압 $4{\times}10^{-5}$ Pa에서 80 % 이상을 나타내었다. 본 연구를 통하여 최적의 산소 분압 선정이 ITO 박막의 결정성 향상, 캐리어 밀도 향상 그리고 전기전도도 향상 효과를 나타냄을 확인하였다.

폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성 (Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers)

  • 김성현;송기국
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.531-535
    • /
    • 2012
  • 폴리아닐린(PANI) 나노섬유를 전도성 충전제로 사용하여 광경화형 전도성 투명필름을 제조하였다. 화학산화중합(chemical oxidation polymerization)으로 나노섬유 구조의 산화형 폴리아닐린(ES-PANI)을 합성하였다. ES-PANI는 디도핑을 통해 환원형 폴리아닐린(EB-PANI)으로 유도하였다. 이것을 전도성 충전제의 전구체로 사용하여 도데실벤젠설폰산(DBSA)이 포함되어 있는 광경화형 레진에 분산시키면 재도핑된 재산화형 폴리아닐린(rES-PANI)을 얻을 수 있었다. 이런 과정을 통해 나노섬유 형태가 유지되면서 높은 전도성과 분산안정성이 우수한 광경화형 전도성 레진용액을 제조할 수 있었다. 제조된 광경화형 전도성 레진용액은 상온에서 3달 정도 두어도 rES-PANI 충전제의 침전물이 생기지 않았다. 또한 이 용액을 폴리(메틸 메타크릴레이트)(PMMA) 기재 위에 스핀코팅 후 광경화하여 약 $5{\mu}m$ 두께의 전도성 투명필름을 제조하였다. rES-PANI 나노섬유 농도가 1.4 wt%일 때 표면저항 $6.5{\times}10^8{\Omega}/sq$, 550 nm 파장에서 91.1%의 투과도를 보였다. ES-PANI의 디도핑-재도핑(dedoping-redoping) 과정을 통해 광경화형 전도성 레진용액에 분산된 PANI는 농도에 따라 필름표면저항과 광학적 투명도를 조절할 수 있는 대전방지 보호필름을 제작하는 새로운 방법을 제시하였다.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

소수성 플라보노이드인 루테올린을 함유한 Ethosome의 제조 및 특성조사 (Preparation and Characterization of Ethosome Containing Hydrophobic Flavonoid Luteolin)

  • 이상민;최문재;이영무;진병석
    • 공업화학
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2010
  • 소수성 플라보노이드인 루테올린의 안정성을 향상시키고 또한 의약이나 화장품 분야에 널리 활용하기 위해서 ethosome에 루테올린 포집을 시도하였다. 편광현미경과 열분석기인 DSC 등을 사용하여 액정의 형성과정이나 열적 특성 등을 관찰하였다. 에탄올에 용해된 레시틴 혼합물에 PBS 완충용액 첨가에 따른 W/O에서 W/O/W로의 상 전환 시점은 전도도 변화로 관측될 수 있었다. Ethosome을 구성하는 성분 및 조성에 따라 입자크기가 달라지는데 레시틴에 루테올린을 10% 정도 혼합하여도 입자크기에 별 영향이 없었다. 루테올린이 ethosome에 포집되었을 때 안정성이 향상되는 효과를 DPPH 실험을 통해 확인하였다. Ethosome의 안정화 효능은 토코페롤 첨가에 의해 더욱 향상되었다.

Oxide 표면에 Self-Assembly Monolayers를 이용한 전도성 고분자 Poly(3-hexylthiophene)(P3HT) 증착 및 Patterning 연구 (Deposition of Poly(3-hexylthiophene)(P3HT) by Vapor Deposition and Patterning Using Self-Assembled Monolayers)

  • 팽일선;김현호;김성수;이재갑
    • 한국재료학회지
    • /
    • 제18권12호
    • /
    • pp.664-668
    • /
    • 2008
  • Vapor phase polymerization of a conductive polymer on a $SiO_2$ surface can offer an easy and convenient means to depositing pure and conductive polymer thin films. However, the vapor phase deposition is generally associated with very poor adhesion as well as difficulty when patterning the polymer thin film onto an oxide dielectric substrate. For a significant improvement of the patternability and adhesion of Poly(3-hexylthiophene) (P3HT) thin film to a $SiO_2$ surface, the substrate was pre-patterned with n-octadecyltrichlorosilane (OTS) molecules using a ${\mu}$-contact printing method. The negative patterns were then backfilled with each of three amino-functionalized silane self-assembled monolayers (SAMs) of (3-aminopropyl) trimethoxysilane (APS), N-(2-aminoethyl)-aminopropyltrimethoxysilane (EDA), and (3- trimethoxysilylpropyl)diethylenetriamine (DET). The quality and electrical properties of the patterned P3HT thin films were investigated with optical and atomic force microscopy and a four-point probe. The results exhibited excellent selective deposition and significantly improved adhesion of P3HT films to a $SiO_2$ surface. In addition, the conductivity of polymeric thin films was relatively high (${\sim}13.51\;S/cm$).

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik;Kang, Soon Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2067-2072
    • /
    • 2013
  • Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.

조명 및 카메라 이동속도가 토양 영상에 미치는 영향 (Effect of light illumination and camera moving speed on soil image quality)

  • 정선옥;조기현;정기열
    • 농업과학연구
    • /
    • 제39권3호
    • /
    • pp.407-412
    • /
    • 2012
  • Soil texture has an important influence on agriculture such as crop selection, movement of nutrient and water, soil electrical conductivity, and crop growth. Conventionally, soil texture has been determined in the laboratory using pipette and hydrometer methods requiring significant amount of time, labor, and cost. Recently, in-situ soil texture classification systems using optical diffuse reflectometry or mechanical resistance have been reported, especially for precision agriculture that needs more data than conventional agriculture. This paper is a part of overall research to develop an in-situ soil texture classification system using image processing. Issues investigated in this study were effects of sensor travel speed and light source and intensity on image quality. When travel speed of image sensor increased from 0 to 10 mm/s, travel distance and number of pixel were increased to 3.30 mm and 9.4, respectively. This travel distances were not negligible even at a speed of 2 mm/s (i.e., 0.66 mm and 1.4), and image degradation was significant. Tests for effects of illumination intensity showed that 7 to 11 Lux seemed a good condition minimizing shade and reflection. When soil water content increased, illumination intensity should be greater to compensate decrease in brightness. Results of the paper would be useful for construction, test, and application of the sensor.

SiC(3C)/Si 수광소자 (SiC(3C)/Si Photodetector)

  • 박국상;남기석;김정윤
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.212-216
    • /
    • 1999
  • SiC(3C) 광다이오드는 p-형 Si 위에 tetramethylsilane (TMS)를 열분해아여 화학기상증착법으로 성장된 SiC(3C) 에피층을 성장하여 제작되었다. SiC(3C)의 전기적 특성은 홀 측정(Hall measurement) 및 전류-전압(I-V) 특성으로 조사되었다. SiC(3C) 에피층의 전도형은 n-형이었다. 저항성 접촉은 마스크 (shadow-mask)를 통해서 Al을 열증착하여 형성하였다. SiC(3C)광다이오드의 광학적 이득(photovoltaic detection)를 해석하기 위하여 SiC(3C) 에피층의 Spectral response (SR)를 전기적 변수(electrical parameter) 및 광다이오드의 기하학적 구조(geometric structure)를 고려하여 계산하였다. 적절히 선정된 변수들로부터 계산된 SR의 최대값은 550 nm에서 약 0.75이었고, 파장영역 400~600 nm 사이에서 청색 및 근자외선 광검지기로서 매우 유용하다.

  • PDF

Electric Conduction Mechanisms Study within Zr Doped Mn3O4 Hausmannite Thin Films through an Oxidation Process in Air

  • Said, L. Ben;Boughalmi, R.;Inoubli, A.;Amlouk, M.
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.131-147
    • /
    • 2017
  • In this work further optical and electrical investigations of pure and Zr doped $Mn_3O_4$ (from 0 up to 20 at.%) thin films as a function of frequency. First, the refractive index, the extinction coefficient and the dielectric constants in terms of Zr content are reached from transmittance and reflectance data. The dispersion of the refractive index is discussed by means of Cauchy model and Wemple and DiDomenico single oscillator models. By exploiting these results, it was possible to estimate the plasma pulse ${\omega}_p$, the relaxation time ${\tau}$ and the dielectric constant ${\varepsilon}_{\infty}$. Second, we have performed original ac and dc conductivity studies inspired from Jonscher model and Arrhenius law. These studies helped establishing significant correlation between temperature, activation energy and Zr content. From the spectroscopy impedance analysis, we investigated the frequency relaxation phenomenon and hopping mechanisms of such thin films. Moreover, a special emphasis has been putted on the effect of the oxidation in air of hausmannite thin films to form $Mn_2O_3$ ones at $350^{\circ}C$. This intrigue phenomenon which occurred at such temperature is discussed along with this electrical study. Finally, all results have been discussed in terms of the thermal activation energies which were determined with two methods for both undoped and Zr doped $Mn_3O_4$ thin films in two temperature ranges.