• Title/Summary/Keyword: optical absorbance

Search Result 142, Processing Time 0.029 seconds

A manufacture of disperse diaso black D(DBD) photopolymer thin films and its Physical Properties (Disperse diazo black D(DBD) photopolymer의 박막 제작과 이의 물리적 특성에 관한 연구)

  • Jung, Yong-Hwan;Lee, Ho-Sik;Byun, Dae-Hyun;Kim, Tae-Wan
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1333-1335
    • /
    • 1997
  • We have made disperse diazo black D(DBD) thin films using Langmuir-Blodgett(LB) and vacuum-evaporation technique. Physical and optical properties of the films were investigated. Solution was made with a concentration of $10^{-3}mol/{\ell}$ using chloroform. Moving wall apparatus, (NL-LB140S-MWC) was employed to make the LB films. X,Y and Z-type LB films were manufactured and studied UV/visible absorbance spectra and morphology of surface using atomic force microscopy(AFM). Vacuum-evaporated DB D thin films were made at a pressure of $10^{-5}$ torr. The absorption peaks were observed at 200 and 400 nm in the LB films and vacuum-deposited films. We have also studied photoluminescence spectrum of the DBD films.

  • PDF

Synthesis, Characterization, Absorbance, Fluorescence and Non Linear Optical Properties of Some Donor Acceptor Chromophores

  • Asiri, Abdullah M.;Khan, Salman A.;Al-Amoudi, Muhammed S.;Alamry, Kalid A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1900-1906
    • /
    • 2012
  • Three carbazole chromophores featuring dicyano, cyano, ethyl acetate and dimethyl acetate groups as an acceptor moiety with a ${\pi}$-conjugated spacer and $N$-methyl dibenzo[$b$]pyrole as donor were synthesized by Knovenagel condensation and characterized by IR, $^1HNMR$, $^{13}CNMR$, UV-vis, fluorescence spectroscopy, electrochemistry and theoretical B3LYP/6-$311G^*$ level whilst NLO properties and spectroscopic quantities were calculated. Calculations showed remarkable trend with HOMO located on the donor moiety and LUMO on the acceptors dicyano methylene, cyano, ethyl acetate methylene and dimethyl acetate methylene. In agreement with the calculations, solvatochromic, behavior intramolecular charge transfer band was observed in the visible region.

Iodine doping effect of $\sigma$ -conjugate poly(methyl-phenylsilene). ($\sigma$-공액 고분자 poly(methyl-phenylsilyene)의 요오드 도핑효과 연구)

  • ;;S. Nespurek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.145-148
    • /
    • 2000
  • In contrast to the $\pi$ -conjugated polymers which typically absorb light only in the visible spectral region, the $\sigma$-conjugated polymers can be used as efficient material absorbing light in the UV region. In this work, the electronic and optical properties of I$_2$-doped $\sigma$ -conjugated poly (methyl-phenylsilylene) (PMPSi) polymer were investigated. DC conductivity up to 1.2$\times$10$^{-4}$ S/cm was obtained by I$_2$-doping. In UV/Vis absorbance spectrum, a new peak was observed near 370 nm, which was explained by polaron model. The photoluminescence (PL) intensity decreased with increasing degree of I$_2$-doping, and the Infrared (IR) spectrum analysis revealed that the dopants are not directly coupled to the polymer, but effect motions of the methyl and phenyl groups.

  • PDF

Inhibitory activity of Lactobiocin on the skin inflammation and acnes (Lactobiocin의 피부 염증 및 여드름 저해효과에 관한 연구)

  • 김광수;오세종;김기환;홍진천;이승화
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.150-165
    • /
    • 2002
  • The purpose of this study was to evaluate bacteriocin activity against human flora. Lactobiocin, a bacteriocin produced by Lactococcus sp. HY 449, inhibited the growth of Starphylococcus epidermidis, Starphylococcus aureus, Streptoccoccus pyogenes and Propionibacterium acnes. When crude bacteriocin was added to indicator cells during logarithmic growth, the optical density(O.D 650nm) of cells without bacteriocin increase after 5h of incubation. Whereas in the presence of bacteriocin, the O.D of cell suspensions decreased. The similar patterns were observed for absorbance readings at 280 nm and 260 nm. The release of cellular components when cell were treated with Lactobiocin suggests some degree of membrane damage or cell lysis. Scanning electron microscopy of cells following treatments with Lactobiocin in PBS buffer revealed disruptures of cell morphology. These results indicate that bacteriocin appears to cause cell lysis of tested strains. In cytotoxicity on human fibroblast, LD$\_$50/ of Lactobiocin was ca. 50 mg/ml and no change was observed cell proliferation at the same concentration. Any irritation and allergic reaction did not observed when evaluated by human patch test for Lactobiocin.

Gold Nanoparticles-embedded MAPbI3 Perovskite Thin Films

  • Kim, Hyojung;Byun, Hye Ryung;Kim, Bora;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1725-1728
    • /
    • 2018
  • We synthesized the gold nanoparticles (Au NPs)-embedded methylammonium lead iodide ($MAPbI_3$) film for the first time. The effects of metal nanoparticles on $MAPbI_3$ perovskite were systematically studied using UV-Vis absorption and photoluminescence (PL) measurements. As a result, the 20-nm-sized Au NPs-embedded $MAPbI_3$ film exhibited a 4.15% higher absorbance than the bare $MAPbI_3$ film. Moreover, the average PL intensity of the Au NPs-embedded $MAPbI_3$ film increased by about 75.25% over the bare $MAPbI_3$ film. Therefore, we have confirmed that addition of the Au NPs has a positive effect on the optical properties of $MAPbI_3$, and we believe that this study will provide a basic insight into the metal nanoparticles-embedded perovskite thin films for the future optoelectronic applications.

A Bio-fluidic Device for Adaptive Sample Pretreatment and Its Application to Measurements of Escherichia coli Concentrations

  • Choi Won-Jae;Park Je-Kyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement of Escherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analyses obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in which E. coli concentrations can be measured is broadened, to an optical density (O.D.) range of $0.3{\sim}30$. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.

A Method to Determine Amount of Adsorbed Oil in Hair Washing Using Absorption Spectroscopy (흡수 분광법을 이용한 세정 과정에서 흡착된 오일의 평가)

  • Song, Sang-Hun;Kim, Hyun young;Son, Seong Gil
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • Oil adsorption during hair or body washing is responsible for the hair conditioning. In this study, we established a method to extract oil from a substrate, and to determine amount of adsorbed oil upon substrate using a conventional absorption spectroscopy. We controlled the mole fraction of a surfactant in a mixture of anionic and amphoteric surfactants because that it induces the coacervate that regulates amount of adsorbed oil through the alteration of oil viscosity. Based on this, we established the optimized condition for adsorption and extraction for oil. UV absorbance were employed to estimate the amount of adsorbed oil using optical absorbance after extraction via adsorption. The estimation was confirmed by comparing with a mass analysis in HPLC and an adhesive energy in AFM. It has been proved that this method can be applied to all cases of oil adsorption from the results with various cationic polymers and a complex system of the polymers which regulate the oil adsorption.

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF

Integrated Cavity Output Spectroscopy Using an External Cavity Diode Laser for the Density Absorption Measurement of Trace Gases (미량 기체의 밀도 측정을 위한 외부 공진기 반도체 레이저 광학공동 적분 투과 분광법)

  • Ryoo Hoon Chul;Yoo Yong Shin;Lee Jae Yong;Hahn Jae Won
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Integrated cavity output spectroscopy(ICOS) is a simple, non-intrusive absorption measurement technique that can detect and quantify trace-level gas species. The spectral absorbance of a gas is quantified from the integrated optical output of the modulated high-finesse cavity containing the sample which is irradiated by a wavelength-swept laser source. We constructed an experimental setup by using a tunable single mode external cavity diode laser operating at the wavelength near 765 nm and a Fabry-Perot cavity with length modulation achieved by a piezoelectric transducer where one of the cavity mirrors sat on. In the experiment performed on minute oxygen gas at the wave-length near 764.5nm, we demonstrated the minimum detectable absorption of $8.45\times10^{-8}cm^{-1}$.

IDENTIFICATION OF FALSIFIED DRUGS USING NEAR-INFRARED SPECTROSCOPY

  • Scafi, Sergio H.F.;Pasquini, Celio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3112-3112
    • /
    • 2001
  • Near-Infrared Spectroscopy (NIRS) was investigated aiming at the identification of falsified drugs. The identification is based on comparison of the NIR spectrum of a sample with a typical spectra of an authentic drug using multivariate modelling and classification algorithms (PCA/SIMCA). Two spectrophotometers (Brimrose - Luminar 2000 and 2030), based on acoustic-optical filter (AOTF) technology, sharing the same controlling computer, software (Brimrose - Snap 2.03) and the data acquisition electronics, were employed. The Luminar 2000 scans the range 850 1800 nm and was employed for transmitance/absorbance measurements of liquids with a transflectance optical bundle probe with total optical path of 5 mm and a circular area of 0.5 $\textrm{cm}^2$. Model 2030 scans the rage 1100 2400 nm and was employed for reflectance measurement of solids drugs. 300 spectra, acquired in about 20 s, were averaged for each sample. Chemometric treatment of the spectral data, modelling and classification were performed by using the Unscrambler 7.5 software (CAMO Norway). This package provides the Principal Component Analysis (PCA) and SIMCA algorithms, used for modelling and classification, respectively. Initially, NIRS was evaluated for spectrum acquisition of various drugs, selected in order to accomplish the diversity of physico-chemical characteristics found among commercial products. Parameters which could affect the spectra of a given drug (especially if presented as solid tablets) were investigated and the results showed that the first derivative can minimize spectral changes associated with tablet geometry, physical differences in their faces and position in relation to the probe beam. The effect of ambient humidity and temperature were also investigated. The first factor needs to be controlled for model construction because the ambient humidity can cause spectral alterations that should cause the wrong classification of a real drug if the factor is not considered by the model.

  • PDF