Browse > Article
http://dx.doi.org/10.3938/jkps.73.1725

Gold Nanoparticles-embedded MAPbI3 Perovskite Thin Films  

Kim, Hyojung (Department of Energy Science, Sungkyunkwan University)
Byun, Hye Ryung (Department of Energy Science, Sungkyunkwan University)
Kim, Bora (Department of Energy Science, Sungkyunkwan University)
Jeong, Mun Seok (Department of Energy Science, Sungkyunkwan University)
Abstract
We synthesized the gold nanoparticles (Au NPs)-embedded methylammonium lead iodide ($MAPbI_3$) film for the first time. The effects of metal nanoparticles on $MAPbI_3$ perovskite were systematically studied using UV-Vis absorption and photoluminescence (PL) measurements. As a result, the 20-nm-sized Au NPs-embedded $MAPbI_3$ film exhibited a 4.15% higher absorbance than the bare $MAPbI_3$ film. Moreover, the average PL intensity of the Au NPs-embedded $MAPbI_3$ film increased by about 75.25% over the bare $MAPbI_3$ film. Therefore, we have confirmed that addition of the Au NPs has a positive effect on the optical properties of $MAPbI_3$, and we believe that this study will provide a basic insight into the metal nanoparticles-embedded perovskite thin films for the future optoelectronic applications.
Keywords
Perovskite; Gold nanoparticles; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Xing et al., Science 342, 344 (2013).   DOI
2 D. H. Shin, J. H. Heo and S. H. Im, J. Korean Phys. Soc. 71, 593 (2017).   DOI
3 S. D. Stranks et al., Science 342, 341 (2013).   DOI
4 M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon. 8, 506 (2014).   DOI
5 A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).   DOI
6 W. S. Yang et al., Science 356, 1376 (2017).   DOI
7 D. Bi et al., Sci. Adv. 2, 1 (2016).
8 H. Lee, S. Rhee, J. Kim, C. Lee and H. Kim, J. Korean Phys. Soc. 69, 406 (2016).   DOI
9 G. Yang et al., J. Mater. Chem. A 5, 1658 (2017).   DOI
10 A. A. Mamun, T. T. Ava, H. J. Jeong, M. S. Jeong and G. Namkoong, Phys. Chem. Chem. Phys. 19, 9143 (2017).   DOI
11 D. Gedamu et al., Sci. Rep. 8, 12885 (2018).   DOI
12 W. Xu et al., Adv. Funct. Mater. 28, 1802320 (2018).   DOI
13 H. Choi, Y-S. Chen, K. G. Stamplecoskie and P. V. Kamat, J. Phys. Chem. Lett. 6, 217 (2015).   DOI
14 M. D. Brown et al., Nano Lett. 11, 438 (2011).   DOI
15 P. Nbelayim, G. Kawamura, W. Kian Tan, H. Muto and A. Matsuda, Sci. Rep. 7, 15690 (2017).   DOI
16 R. T. Ginting et al., ACS Appl. Mater. Interfaces 9, 36111 (2017).   DOI
17 S. P Lim, A. Pandikumar, H. N. Lim, R. Ramaraj and N. M. Huang, Sci. Rep. 5, 11922 (2015).   DOI
18 J. Qi, X. Dang, P. T. Hammond and A. M. Belcher, ACS Nano 5, 7108 (2011).   DOI
19 S. Carretero-Palacios, A. Jimenez-Solano and H. Miguez, ACS Energy Lett. 1, 323 (2016).   DOI
20 P. Chen et al., J. Phys. Chem. Lett. 8, 3961 (2017).   DOI
21 J. Lee, M. M. Menamparambath, J-Y. Hwang and S. Baik, Chem. Sus. Chem. 8, 2358 (2015).   DOI