Browse > Article

A Bio-fluidic Device for Adaptive Sample Pretreatment and Its Application to Measurements of Escherichia coli Concentrations  

Choi Won-Jae (Department of BioSystems, Korea Advanced Institute of Science and Technology (KAIST))
Park Je-Kyun (Department of BioSystems, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.1, 2006 , pp. 54-60 More about this Journal
Abstract
In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement of Escherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analyses obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in which E. coli concentrations can be measured is broadened, to an optical density (O.D.) range of $0.3{\sim}30$. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.
Keywords
absorbance; adaptive dilution; bio-fluidic device; E. coli concentration; sample pretreatment; to-and-fro mixing;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Reyes, D. R., D. Iossifidis, P.-A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74: 2623-2636   DOI   ScienceOn
2 Vilkner, T., D. Janasek, and A. Manz (2004) Micro total analysis systems. Recent developments. Anal. Chem. 76: 3373-3385   DOI   ScienceOn
3 Tüdos, A. J., G. A. J. Besselink, and R. B. M. Schasfoort (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1: 83-95   DOI   ScienceOn
4 Ekins, R. P. (1998) Ligand assays: from electrophoresis to miniaturized microarrays. Clin. Chem. 44: 2015-2030
5 Mitchell, P. (2002) A perspective on protein microarrays. Nat. Biotechnol. 20: 225-229   DOI   ScienceOn
6 Yang, J., Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem. 71: 911-918   DOI   ScienceOn
7 de Mello, A. J. and N. Beard (2003) Dealing with real samples: sample pre-treatment in microfluidic systems. Lab Chip 3: 11N-19N   DOI   ScienceOn
8 Erickson, D. and D. Li (2004) Integrated microfluidic devices. Anal. Chim. Acta 507: 11-26   DOI   ScienceOn
9 Chung, Y. C., Y.-L. Hsu, C.-P. Jen, M.-C. Lu, and Y.-C. Lin (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4: 70-77   DOI   ScienceOn
10 Paik, P., V. K. Pamula, and R. B. Fair (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3: 253-259   DOI   ScienceOn
11 Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507: 145-150   DOI   ScienceOn
12 Xia, Y. and G. M. Whitesides (1998) Soft lithography. Angew. Chem. Int. Ed. 37: 550-575   DOI   ScienceOn
13 Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 10: 378-384   과학기술학회마을   DOI   ScienceOn
14 Voldman, J., M. L. Gray, and M. A. Schmidt (2004) Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1: 401-425   DOI   ScienceOn
15 Verpoorte, E. (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23: 677-712   DOI   ScienceOn
16 Mitchell, P. (2001) Microfluidics downsizing large-scale biology. Nat. Biotechnol. 19: 717-721   DOI   ScienceOn
17 Kovacs, G. T. A. (1998) Micromachined Transducers Sourcebook. pp. 783. McGraw-Hill, New York, NY, USA
18 Ingle, J. D. and S. R. Crouch (1972) Evaluation of precision of quantitative molecular absorption spectrometric measurements. Anal. Chem. 44: 1375-1386   DOI
19 Choi, O. Z., J. Yu, and J.-K. Park (2004) To-and-fro mixing in micro/nano-fluidic channel. Proceedings of 2nd International Symposium on Nanomanufacturing. November 3-5. Daejeon, Korea. pp. 202-205
20 Min, J., J.-H. Kim, and S. Kim (2004) Microfluidic device for bio analytical systems. Biotechnol. Bioprocess Eng. 9: 100-106   DOI   ScienceOn
21 Cunningham, D. D. (2001) Fluidics and sample handling in clinical chemical analysis. Anal. Chim. Acta 429: 1-18   DOI   ScienceOn
22 O'Neil, M. J., A. Smith, and R. E. Heckelman (2001) The Merck Index. 13th ed., pp. 799. Merck, NJ, USA
23 Kricka, L. J. (1998) Miniaturization of analytical systems. Clin. Chem. 44: 2008-2014
24 Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow (2001) Protein sizing on a microchip. Anal. Chem. 73: 1207-1212   DOI   ScienceOn
25 Lu, L.-H., K. S. Ryu, and C. Liu (2002) A magnetic microstirrer and array for microfluidic mixing. J. Microelectromech. Syst. 11: 462-469   DOI   ScienceOn
26 Novic, M., I. Berregi, A. Ríos, and M. Valcárcel (1999) A new sample-injection/sample-dilution system for the flow-injection analytical technique. Anal. Chim. Acta 381: 287-295   DOI   ScienceOn
27 Yun, K.-S. and E. Yoon (2004) Microfluidic components and bio-reactors for miniaturized bio-chip applications. Biotechnol. Bioprocess Eng. 9: 86-92   DOI   ScienceOn
28 Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides (2002) Chaotic mixer for microchannels. Science 295: 647-651   DOI   ScienceOn
29 Truskey, G. A., F. Yuan, D. F. Katz (2004) Transport Phenomena in Biological Systems. pp. 103. Prentice Hall, NJ, USA
30 Rothman, J. D., S. R. Crouch, and J. D. Ingle (1975) Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry. Anal. Chem. 47: 1226-1233   DOI   ScienceOn
31 Bessoth, F. G., A. J. de Mello, and A. Manz (1999) Microstructure for efficient continuous flow mixing. Anal. Commun. 36: 213-215   DOI   ScienceOn
32 Fowler, J., H. Moon, and C.-J. Kim (2002) Enhancement of mixing by droplet-based microfluidics. Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems. January 20-24. Las Vegas, Nevada, USA. pp. 97-100