• 제목/요약/키워드: opinion mining

검색결과 272건 처리시간 0.021초

Tourism Destination Recommender System for the Cold Start Problem

  • Zheng, Xiaoyao;Luo, Yonglong;Xu, Zhiyun;Yu, Qingying;Lu, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.3192-3212
    • /
    • 2016
  • With the advent and popularity of e-commerce, an increasing number of consumers prefer to order tourism products online. A recommender system can help these users contend with information overload; however, such a system is affected by the cold start problem. Online tourism destination searching is a more difficult task than others on account of its more restrictive factors. In this paper, we therefore propose a tourism destination recommender system that employs opinion-mining technology to refine user preferences and item opinion reputations. These elements are then fused into a hybrid collaborative filtering method by combining user- and item-based collaborative filtering approaches. Meanwhile, we embed an artificial interactive module in our recommender system to alleviate the cold start problem. Compared with several well-known cold start recommendation approaches, our method provides improved recommendation accuracy and quality. A series of experimental evaluations using a publicly available dataset demonstrate that the proposed recommender system outperforms existing recommender systems in addressing the cold start problem.

A Sentiment Classification Approach of Sentences Clustering in Webcast Barrages

  • Li, Jun;Huang, Guimin;Zhou, Ya
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.718-732
    • /
    • 2020
  • Conducting sentiment analysis and opinion mining are challenging tasks in natural language processing. Many of the sentiment analysis and opinion mining applications focus on product reviews, social media reviews, forums and microblogs whose reviews are topic-similar and opinion-rich. In this paper, we try to analyze the sentiments of sentences from online webcast reviews that scroll across the screen, which we call live barrages. Contrary to social media comments or product reviews, the topics in live barrages are more fragmented, and there are plenty of invalid comments that we must remove in the preprocessing phase. To extract evaluative sentiment sentences, we proposed a novel approach that clusters the barrages from the same commenter to solve the problem of scattering the information for each barrage. The method developed in this paper contains two subtasks: in the data preprocessing phase, we cluster the sentences from the same commenter and remove unavailable sentences; and we use a semi-supervised machine learning approach, the naïve Bayes algorithm, to analyze the sentiment of the barrage. According to our experimental results, this method shows that it performs well in analyzing the sentiment of online webcast barrages.

기계학습을 이용한 단문 오피니언 문서의 효율적 검색 기법 (Efficient Retrieval of Short Opinion Documents Using Learning to Rank)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.117-126
    • /
    • 2013
  • 최근 들어 트위터나 페이스북과 같은 SNS가 대중화되면서, 오피니언 마이닝에 관한 연구가 활발히 진행되고 있다. 그러나 현재의 오피니언 마이닝 연구는 대부분 감성분류나 특징선택 방법에 중점을 두고 있으며, 오피니언 문서의 검색에 관한 연구는 아직 미진한 실정이다. 본 논문에서는 단문으로 구성된 오피니언 문서로부터 사용자가 원하는 문서들을 효율적으로 검색하는 기법을 제안한다. 제안된 방법에서는 기존의 감성분류 방법을 활용함과 동시에 문서의 질적 평가를 위해 여러 가지 특징들을 적용한다. 검색 모델을 생성하기 위해 기계학습 기반 랭킹 기법을 활용하며, 감성 분류 모델을 기계학습 랭킹 모델에 통합하는 방법을 사용한다. 또한 실험을 통하여 제안된 방법이 오피니언 검색에 효율적으로 적용될 수 있음을 보여준다.

오피니언 마이닝을 이용한 페이스북 팬 페이지 평가 시스템 (Facebook Fan Page Evaluation System Based on User Opinion Mining)

  • 판트렁녹;유명식
    • 한국통신학회논문지
    • /
    • 제40권12호
    • /
    • pp.2488-2490
    • /
    • 2015
  • 본 논문에서는 페이스북에 게시된 글의 어휘 분석 및 호불호를 평가하여, 게시된 글에 대한 정확한 평가를 할 수 있는 시스템을 제안하였다. 기존 평가시 스템과의 성능 비교를 통하여 제안 시스템의 평가 정확도가 높음을 확인하였다.

의견정보 검색엔진을 위한 웹 콘텐츠 마이닝 시스템 (Web Contents Mining System for Opinion Information Searching Engine)

  • 주해종;박영배;최혜길
    • 정보학연구
    • /
    • 제12권3호
    • /
    • pp.7-17
    • /
    • 2009
  • This research is about the design of an opinion drawing and analysis system through statistical based Web Mining of web contents, where data of opinions are automatically drawn and analyzed concerning web documents that are scattered around in various web sites that exist within the internet. Furthermore, provides a search service that can easily classify positive/negative opinions and also provide searching and statistical information. Users, who want to search for opinions, can input a specific keyword to observe opinions of others easily. In addition, there is a merit in materializing the monitoring system.

  • PDF

사용자 정보에 따른 오피니언 마이닝 신뢰성 향상 방법 (The way to improve trust ratio of opinion mining by using user information)

  • 임지연;김이준;김응모
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.261-262
    • /
    • 2012
  • 소셜 네트워크의 부상과 함께 소셜 네트워크를 이용하여 홍보를 하는 소셜 커머스 시장도 커지고 있다. 소셜 커머스의 경우 일정한 인원 이상이 구입을 해야 거래가 성립한다. 그래서 실질적으로 환불이나 반품이 힘들기 때문에 그만큼 상품평이 구매에 미치는 영향이 크다고 볼 수 있다. 하지만 이러한 상품평의 경우에도 개인의 상황이나 취향 등에 따라 상품평이 주는 정보의 방향이 크게 바뀔 수 있다는 단점도 있다. 본 논문에서는 오피니언 마이닝을 이용하여 의미를 추출하고, LIWC를 통해 사용자의 기본 정보 및 심리 등을 파악하여 보다 정확한 고객의 개인별 상황에 맞는 상품 평점을 제시한다.

  • PDF

키워드 기반 분산 SNS 검색 및 오피니언 마이닝 시스템 (Distributed SNS Crawling and Opinion Mining System)

  • 윤한중;석상기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.399-401
    • /
    • 2016
  • 제안된 시스템은 다양한 소셜 네트워크에서 사용자가 입력한 키워드를 기반으로 데이터를 수집하여 형태소 분석을 거쳐 사용자에게 통계정보 및 키워드에 대한 오피니언 마이닝 결과를 제공한다. SNS 상에 수많은 정보들이 저장되는데, 이를 이용하는 과정에서 단편적인 정보밖에 얻을 수 없는 비전문적인 사용자에게 유용한 데이터를 제공하기 위해 Opinion Mining 및 다양한 통계적 분석을 통해 키워드에 대한 시각화 정보를 출력한다.

장애인의 비유적 표현을 위한 오피니언 마이닝 시스템 (An Opinion Mining System for A Figurative Representation of Disabilities)

  • 김창기;서정민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.95-96
    • /
    • 2015
  • 사회복지 영역의 확대로 복지서비스 수혜자들의 사례관리가 매우 중요한 영역으로 자리매김하고 있다. 이는 사례관리를 이용하여 새로운 서비스를 발굴하고, 실행결과를 평가하여 중요한 패턴을 추출 후 다른 유사 대상자들에게 적용하는 것이 실패를 줄이는 방법이기 때문이다. 그러나 현재 대부분의 사례관리시스템은 서비스를 입력하여 저장/관리하는 측면만을 제공하여 체계적인 분석이 안되고 있다. 이에 본 논문에서는 사례자들의 상담 및 서비스 결과에 관한 오피니언을 분석하여 마음속에 내포하고 있는 사례(비유적 표현)에 관한 실제적인 평가와 오피니언을 추출하는 시스템을 제안한다. 제안하는 시스템을 실험하기 위해 자기의 오피니언을 외부로 노출하기 꺼려하는 장애인을 대상으로 한 상담 사례를 이용하여 실험하였다.

  • PDF

감정자질과 커널모델을 이용한 영화평 평점 예측 시스템 (A Rating System on Movie Reviews using the Emotion Feature and Kernel Model)

  • 허향란;정형일;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.37-41
    • /
    • 2011
  • 본 논문에서는 최근 많은 관심을 받고 있는 Opinion Mining으로서 사용자들의 자연어 형태의 영화평 문장을 분석하여 자동으로 평점을 예측하는 시스템을 제안한다. 제안 시스템은 영화평 분석에 적합한 어휘 자질, 감정 자질, 가치 자질 및 기타 자질들을 추출하고, 10점 척도의 영화평의 평점을 10개의 범주로 가정하여, 커널모델인 다중 범주 Support Vector Machine (SVM) 모델을 이용하여 높은 성능으로 영화평의 평점을 범주 분류한다.

  • PDF

Political Opinion Mining from Article Comments using Deep Learning

  • Sung, Dae-Kyung;Jeong, Young-Seob
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.