Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.11
/
pp.453-462
/
2016
Since the Internet provides a way of expressing and sharing Internet users' mindsets, corporate marketers want to acquire measurable and actionable insights from web data. In the past, companies used to analyze the attitude, satisfaction, and loyalty of consumers toward their brands using survey data, whereas nowadays this is done using the big data extracted from Social Network Services. In this study, we propose a framework for clustering brand names using the social metrics gathered on social media. We also conduct a case study of the automobile industry to verify the feasibility of the proposed framework. We calculate the brand name distance for each pair of brand names based on the total number of times that they are mentioned together. These distances are used to project the brand name onto a 3-dimensional space using multidimensional scaling. After the projection, we found the clusters of brand names and identified the characteristics of each cluster. Furthermore, we concluded this paper with a discussion of the limitations and future directions of this research.
Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.
Previous polarity classification using sentiment analysis utilizes a sentence rule by product reviews based rating points. It is difficult to be applied to blogs which have not rating of product reviews and is possible to fabricate product reviews by comment part-timers and managers who use web site so it is not easy to understand a product and store reviews which are reliability. Considering to these problems, if we analyze blogs which have personal and frank opinions and classify polarity, it is possible to understand rightly opinions for the product, store. This paper suggests that we extract high frequency vocabularies in blogs by several domains and choose topic words. Then we apply a technique of sentiment analysis and classify polarity about contents of blogs. To evaluate performances of sentiment analysis, we utilize the measurement index that use Precision, Recall, F-Score in an information retrieval field. In a result of evaluation, using suggested sentiment analysis is the better performances to classify polarity than previous techniques of using the sentence rule based product reviews.
It is very important to analyze online customer reviews, which are small documents of writing opinions or experiences about products or services, for both customers and companies because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we did not propose only dependency network model which is tool for analyzing online customer reviews, but also designed and implemented the system based on the dependency network model. The dependency network model analyzes both subjective and objective sentences, so that it can represent relative importance and relationship between the nouns in the sentences. In the result of implementing, we recognized that relative importance and relationship between the features of products or services, which can not be mined by opinion mining, can be represented by the dependency network model.
Journal of the Korea Society of Computer and Information
/
v.25
no.11
/
pp.41-50
/
2020
Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.
Recently, big data analysis has drawn attention in various fields as it can generate value from large amounts of data and is also used to run political campaigns or predict results. However, existing research had limitations in compiling information about candidates at a high-level by analyzing only specific SNS data. Therefore, this study analyses news trends, topics extraction, sentiment analysis, keyword analysis, comment analysis for the 2017 presidential election of South Korea. The results show that various topics had been generated, and online opinions are extracted for trending keywords of respective candidates. This study also shows that portal news and comments can serve as useful tools for predicting the public's opinion on social issues. This study will This paper advances a building strategic course of action by providing a method of analyzing public opinion across various fields.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.133-140
/
2020
Emotional analysis is an application of opinion mining that analyzes opinions and tendencies of people appearing in unstructured text. Recently, emotional analysis of social media has attracted attention, but social media contains newly-created words and slang, so it is not easy to analyze with existing emotional analysis. In this study, I design a new emotional analysis system to solve these problems. The proposed system is possible to analyze various emotions as well as positive and negative in social media including newly-created words and slang. First, I collect newly-created words and slang related to emotions that appear in social media. Then, expand the existing emotional model and use it to quantify the degree of sentiment in emotional words. Also, a new sentiment dictionary is constructed by reflecting the degree of sentiment. Finally, I design an emotional analysis system that applies an sentiment dictionary that includes newly-created words and an extended emotional model.
This study confirms the polarity of news articles on apartment prices using Opinion Mining which has widely been used for a big data analysis. The analyses were carried out utilizing internet news articles posted on the Naver for two years: 2012 and 2018. We proposed a sentiment analysis model and modeled a topic-oriented sentiment dictionary construction methods. As a result of analyzing the proposed sentiment analysis model, it was confirmed that there was a difference according to the tendency of the media companies in selecting social issues at the time of rising apartment prices. At the same time, we were able to find more affirmative articles in the media companies which share similar sentiment with the government in charge. In this paper, we proposed a sentiment analysis model that can be used in real estate field and analyzed the polarity of unformatted data related to real estate. In order to integrate them into various fields in the future, it is necessary to build the sentiment dictionaries by themes, as well as to collect various unformatted data over extended periods.
Misbah Iram;Saif Ur Rehman;Shafaq Shahid;Sayeda Ambreen Mehmood
International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.97-106
/
2023
Sentiment analysis using social network platforms such as Twitter has achieved tremendous results. Twitter is an online social networking site that contains a rich amount of data. The platform is known as an information channel corresponding to different sites and categories. Tweets are most often publicly accessible with very few limitations and security options available. Twitter also has powerful tools to enhance the utility of Twitter and a powerful search system to make publicly accessible the recently posted tweets by keyword. As popular social media, Twitter has the potential for interconnectivity of information, reviews, updates, and all of which is important to engage the targeted population. In this work, numerous methods that perform a classification of tweet sentiment in Twitter is discussed. There has been a lot of work in the field of sentiment analysis of Twitter data. This study provides a comprehensive analysis of the most standard and widely applicable techniques for opinion mining that are based on machine learning and lexicon-based along with their metrics. The proposed work is helpful to analyze the information in the tweets where opinions are highly unstructured, heterogeneous, and polarized positive, negative or neutral. In order to validate the performance of the proposed framework, an extensive series of experiments has been performed on the real world twitter dataset that alter to show the effectiveness of the proposed framework. This research effort also highlighted the recent challenges in the field of sentiment analysis along with the future scope of the proposed work.
Background: The relationship between risk factors and likelihood of occupational injury has been studied. However, what has been published has only provided a limited explanation of why some of the employees working in the same environment as other employees suffered a single-injury event, while other employees experienced multiple-injury events. This article reports on an investigation of whether artisanal and small-scale miners in Migori County of Kenya are susceptible to a single-injury or multiple-injury incidences, and if so, what underpinning parameters explain the differences between the single incident injured and the multiple incident injured group. Mine management commitment to safety in artisanal and small-scale mining (ASM) operations is also considered. Materials and methods: The research objectives were achieved by surveying 162 uninjured and 74 injured miners. A structured, closed-end questionnaire was administered to participants after the stratification of the study population and systematic selection of the representative samples. Results: The results showed that most injured miners suffer a single-injury incident rather than experiencing multiple-injury events, and laceration (28.40%) was the common injury suffered by the miners. The analysis showed that the risk factors for the single incident injured group were not similar to those in the multiple incident injured group. The research also found mine workers have low opinion about mine management/owners commitment to safety. Conclusion: The study concluded that mine management and miners need to be educated and sensitized on the dangers of this operation. Provision of safety gears and positive safety culture must be a top priority for management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.