• Title/Summary/Keyword: operator.

Search Result 5,770, Processing Time 0.033 seconds

Constraint Operator for the Kinematic Calibration of a Parallel Mechanism

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo;Kwon, Sung-Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • This paper introduces a constraint operator for the kinematic calibration of a parallel mechanism. By adopting the concept of a constraint operator, the movement between two poses is constrained. When the constrained movements are satisfied, the active joint displacements are taken and inputted into the kinematic model to compute the theoretical movements. A cost function is derived by the errors between the theoretical movement and the actual movement. The parameters that minimize the cost function are estimated and substituted into the kinematic model for a kinematic calibration. A single constraint plane is employed as a mechanical fixture to constrain the movement, and three digital indicators are used as the sensing devices to determine whether the constrained movement is satisfied. This calibration system represents an effective, low cost and feasible technique for a parallel mechanism. A calibration algorithm is developed with a constraint operator and implemented on a parallel manipulator constructed for a machining center tool.

Development and Test of the Remote Operator Visual Support System Based on Virtual Environment (가상환경기반 원격작업자 시각지원시스템 개발 및 시험)

  • Song, T.G.;Park, B.S.;Choi, K.H.;Lee, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.429-439
    • /
    • 2008
  • With a remote operated manipulator system, the situation at a remote site can be rendered through remote visualized image to the operator. Then the operator can quickly realize situations and control the slave manipulator by operating a master input device based on the information of the virtual image. In this study, the remote operator visual support system (ROVSS) was developed for viewing support of a remote operator to perform the remote task effectively. A visual support model based on virtual environment was also inserted and used to fulfill the need of this study. The framework for the system was created by Windows API based on PC and the library of 3D graphic simulation tool such as ENVISION. To realize this system, an operation test environment for a limited operating site was constructed by using experimental robot operation. A 3D virtual environment was designed to provide accurate information about the rotation of robot manipulator, the location and distance of operation tool through the real time synchronization. In order to show the efficiency of the visual support, we conducted the experiments by four methods such as the direct view, the camera view, the virtual view and camera view plus virtual view. The experimental results show that the method of camera view plus virtual view has about 30% more efficiency than the method of camera view.

POSITIVE INTERPOLATION PROBLEMS IN ALG𝓛

  • KANG, JOO HO;KIM, KI SOOK
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.379-389
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,{\cdots},n$. In this article, we obtained the following : Let ${\mathcal{H}}$ be a Hilbert space and let ${\mathcal{L}}$ be a commutative subspace lattice on ${\mathcal{H}}$. Let X and Y be operators acting on ${\mathcal{H}}$. Then the following statements are equivalent. (1) There exists an operator A in $Alg{\mathcal{L}}$ such that AX = Y, A is positive and every E in ${\mathcal{L}}$ reduces A. (2) sup ${\frac{{\parallel}{\sum}^n_{i=1}\;E_iY\;f_i{\parallel}}{{\parallel}{\sum}^n_{i=1}\;E_iX\;f_i{\parallel}}}:n{\in}{\mathbb{N}},\;E_i{\in}{\mathcal{L}}$ and $f_i{\in}{\mathcal{H}}<{\infty}$ and <${\sum}^n_{i=1}\;E_iY\;f_i$, ${\sum}^n_{i=1}\;E_iX\;f_i>\;{\geq}0$, $n{\in}{\mathbb{N}}$, $E_i{\in}{\mathcal{L}}$ and $f_i{\in}H$.

  • PDF

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

STATE TOKEN PETRI NET MODELING METHOD FOR FORMAL VERIFICATION OF COMPUTERIZED PROCEDURE INCLUDING OPERATOR'S INTERRUPTIONS OF PROCEDURE EXECUTION FLOW

  • Kim, Yun Goo;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.929-938
    • /
    • 2012
  • The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgment and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN-CAHN EQUATION

  • SHIN, JAEMIN;LEE, HYUN GEUN;LEE, JUNE-YUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • The Allen-Cahn equation is solved numerically by operator splitting Fourier spectral methods. The basic idea of the operator splitting method is to decompose the original problem into sub-equations and compose the approximate solution of the original equation using the solutions of the subproblems. The purpose of this paper is to characterize higher order operator splitting schemes and propose several higher order methods. Unlike the first and the second order methods, each of the heat and the free-energy evolution operators has at least one backward evaluation in higher order methods. We investigate the effect of negative time steps on a general form of third order schemes and suggest three third order methods for better stability and accuracy. Two fourth order methods are also presented. The traveling wave solution and a spinodal decomposition problem are used to demonstrate numerical properties and the order of convergence of the proposed methods.

Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor

  • Bandhu, Amitava;Ganguly, Tridib;Chanda, Palas K.;Das, Malabika;Jana, Biswanath;Chakrabarti, Gopal;Sau, Subrata
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.293-298
    • /
    • 2009
  • Temperate mycobacteriophage L1 encodes an unusual repressor (CI) for regulating its lytic-lysogenic switching and, in contrast to the repressors of most temperate phages, it binds to multiple asymmetric operator DNAs. Here, ions like $Na^+$, $Cl^-$, and $acetate^-$ ions were demonstrated to facilitate the optimal binding of CI to cognate operator DNA, whereas $K^+$, $Li^+$, ${NH_4}^+$, $Mg^{2+}$, $carbonate^{2-}$, and $citrate^{3-}$ ions significantly affected its operator binding activity. Of these ions, $Mg^{2+}$ unfolded CI most severely at room temperature and, compared to $Mg^{2+}$, $Na^+$ provided improved thermal stability to CI. Furthermore, the intrinsic tryptophan fluorescence of CI was changed notably upon replacing $Na^+$ with $Mg^{2+}$ and these opposing effects of $Mg^{2+}$ and $Na^+$ were also noticed in their actions on the C-terminal fragment (CTD) of CI. Taken together, $Na^+$ appeared to be more appropriate than $Mg^{2+}$ for maintaining the biologically active conformation of CI needed for its optimal binding to operator DNA.

Development of AC/DC Hybrid Simulation for Operator Training Simulator in Railway System

  • Cho, Yoon-Sung;Lee, Hansang;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • Operator training simulator, within a training environment designed to understand the principles and behavior of the railway system with respect to operator's entries and predefined scenario, can provide a very strong benefit in facilitating operators' handling undesired operations. This simulator consists of computer system and applications, and the purpose of applications is to generate the power and voltage and analyze the AC substation and DC railway, respectively. This paper describes a novel approach to the new techniques for AC/DC hybrid simulation for the operator training simulator in the railway system. We first propose the structure the database of railway system. Then, topology processing and power flow using a linked-list method based on the proposed database, full or decoupled newton-rapshon methods are presented. Finally, the interface between the analysis for AC substation using a newton-rapshon method and the analysis for DC railway system using a time-interval power flow method is described. We have verified and tested the developed algorithm through the extensive testing for the proposed test system. To demonstrate the validity of the developed algorithm, comparative simulations between the proposed algorithm and PSS/E for the test system were conducted.

OPERATOR BEHAVIORS OBSERVED IN FOLLOWING EMERGENCY OPERATING PROCEDURE UNDER A SIMULATED EMERGENCY

  • Choi, Sun-Yeong;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • A symptom-based procedure with a critical safety function monitoring system has been established to reduce the operator's diagnosis and cognitive burden since the Three-Mile Island (TMI) accident. However, it has been reported that a symptom-based procedure also requires an operator's cognitive efforts to cope with off-normal events. This can be caused by mismatches between a static model, an emergency operating procedure (EOP), and a dynamic process, the nature of an ongoing situation. The purpose of this study is to share the evidence of mismatches that may result in an excessive cognitive burden in conducting EOPs. For this purpose, we analyzed simulated emergency operation records and observed some operator behaviors during the EOP operation: continuous steps, improper description, parameter check at a fixed time, decision by information previously obtained, execution complexity, operation by the operator's knowledge, notes and cautions, and a foldout page. Since observations in this study are comparable to the results of an existing study, it is expected that the operational behaviors observed in this study are generic features of operators who have to cope with a dynamic situation using a static procedure.

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.