• Title/Summary/Keyword: operator inequalities

Search Result 135, Processing Time 0.025 seconds

BERNSTEIN-TYPE INEQUALITIES PRESERVED BY MODIFIED SMIRNOV OPERATOR

  • Shah, Wali Mohammad;Fatima, Bhat Ishrat Ul
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.305-313
    • /
    • 2022
  • In this paper we consider a modified version of Smirnov operator and obtain some Bernstein-type inequalities preserved by this operator. In particular, we prove some results which in turn provide the compact generalizations of some well-known inequalities for polynomials.

ORLICZ-TYPE INTEGRAL INEQUALITIES FOR OPERATORS

  • Neugebauer, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.163-176
    • /
    • 2001
  • We examine Orlicz-type integral inequalities for operators and obtain as a corollary a characterization of such inequalities for the Hardy-Littlewood maximal operator extending the well-known L(sup)p-norm inequalities.

  • PDF

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES INVOLVING HYPERGEOMETRIC OPERATORS

  • Choi, Junesang;Agarwal, Praveen
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.283-291
    • /
    • 2014
  • A remarkably large number of inequalities involving the fractional integral operators have been investigated in the literature by many authors. Very recently, Baleanu et al. [2] gave certain interesting fractional integral inequalities involving the Gauss hypergeometric functions. Using the same fractional integral operator, in this paper, we present some (presumably) new fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Saigo, Erd$\acute{e}$lyi-Kober and Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.455-465
    • /
    • 2014
  • In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.

ON NUMERICAL RANGE AND NUMERICAL RADIUS OF CONVEX FUNCTION OPERATORS

  • Zaiz, Khaoula;Mansour, Abdelouahab
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.879-898
    • /
    • 2019
  • In this paper we prove some interesting inclusions concerning the numerical range of some operators and the numerical range of theirs ranges with a convex function. Further, we prove some inequalities for the numerical radius. These inclusions and inequalities are based on some classical convexity inequalities for non-negative real numbers and some operator inequalities.

SOME OPERATOR INEQUALITIES INVOLVING IMPROVED YOUNG AND HEINZ INEQUALITIES

  • Moazzen, Alireza
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.39-48
    • /
    • 2018
  • In this work, by applying the binomial expansion, some refinements of the Young and Heinz inequalities are proved. As an application, a determinant inequality for positive definite matrices is obtained. Also, some operator inequalities around the Young's inequality for semidefinite invertible matrices are proved.

GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS

  • Benaissa, Bouharket
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • In this study, We have applied the right operator k-Riemann-Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 < p < 1 and p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities.

INEQUALITIES OF OPERATOR VALUED QUANTUM SKEW INFORMATION

  • Choi, Byoung Jin;Lee, Mi Ra
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.59-70
    • /
    • 2021
  • In this paper, we study two operator-valued inequalities for quantum Wigner-Yanase-Dyson skew information related to module operators. These are extended results of the trace inequalities for Wigner-Yanase-Dyson skew information. Moreover, we study a sufficient condition to prove an uncertainty relation for operator-valued generalized quantum Wigner-Yanase-Dyson skew information related to module operators and a pair of functions (f, g). Also, we obtain several previous results of scalar-valued cases as a consequence of our main result.