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SOME OPERATOR INEQUALITIES INVOLVING IMPROVED

YOUNG AND HEINZ INEQUALITIES

Alireza Moazzen

Abstract. In this work, by applying the binomial expansion, some refinements
of the Young and Heinz inequalities are proved. As an application, a determinant
inequality for positive definite matrices is obtained. Also, some operator inequalities
around the Young’s inequality for semidefinite invertible matrices are proved.

1. Introduction

The classical Young’s inequality for non-negative real numbers says that if a and

b are non-negative and 0 ≤ r ≤ 1, then

arb1−r ≤ ra+ (1− r)b

with equality if and only if a = b.

If r = 1
2 , we obtain the arithmetic-geometric mean inequality

√
ab ≤ a+ b

2
.

Here, by the following inequality a short proof for the Young’s inequality is given,

ex−1 ≥ x x ∈ R.

The proof of the Young’s inequality:

Take L = ra+ (1− r)b then,

e
a
L
−1 ≥ a

L
≥ 0,

e
b
L
−1 ≥

L
≥ 0.

So, we have

1 = er(
a
L
−1)+(1−r)( b

L
−1) ≥ (

a

L
)r × (

b

L
)1−r.
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Hence,

arb1−r ≤ ra+ (1− r)b.

Kittaneh and Manasrah obtained a refinement of Young’s inequality as the following[5]:

(1.1) arb1−r ≤ ra+ (1− r)b− r0(
√
a−

√
b)2

where, r0 = min{r, 1− r}.
The Heinz’s means are defined as

Hr(a, b) =
arb1−r + a1−rbr

2

where a, b and r has the same conditions of the Young’s inequality.

The Heinz’s inequality asserts that

√
ab ≤ Hr(a, b) ≤

a+ b

2
.

Kittaneh and Manasrah also obtained a refinement of the Heinz’s inequality as

follows:

Hr(a, b) ≤
a+ b

2
− r0(

√
a−

√
b)2

where, r0 = min{r, 1− r}.
In this work, by applying the binomial expansion we prove some refinements of

the Young and Heinz inequalities and as an application, a determinant inequality is

proved by these inequalities. Also, some operator inequalities around the Young’s

inequality are obtained.

Theorem 1.1 (Newton’s generalized binomial theorem). If x and y are real numbers

with |x| > |y| and r is any complex number, then

(x+ y)r =
∞∑
k=0

(
r

k

)
xr−kyk

= xr + rxr−1y +
r(r − 1)

2!
xr−2y2 +

r(r − 1)(r − 2)

3!
xr−3y3 + · · · .

2. Main Results

In the following, at first a refinement of the Young’s inequality is given. Then a

refinement of the Heinz’s inequality is proved by it.
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Theorem 2.1. Let a and b be positive numbers and 0 ≤ r ≤ 1.

(i) If b
2 < a < b then,

(2.1) a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

2

(b− a)2

a
+

r(r − 1)(r − 2)

6

(b− a)3

a2
.

(ii) If a < b
2 then,

(2.2) a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

2

(b− a)2

b
− r(1− r2)

6

(b− a)3

b2
.

Proof. By taking y = b
a , we have y = 1 + x. We consider two cases:

Case 1: x < 1.

By Theorem 1.1 we have( b

a

)r
= yr = (1 + x)r

= 1 + rx+
r(r − 1)

2
x2 +

r(r − 1)(r − 2)

6
x3 + · · · .

For 0 < r < 1, after the second term this series is alternative. So, we have

a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

2

(b− a)2

a
+

r(r − 1)(r − 2)

6

(b− a)3

a2
.

Note that the condition b
2 < a < b ensures that this inequality is a refinement of the

Young’s inequality.

Case 2: x > 1.

In this case, by taking y = a
b = 1− t, we have 1

2 < t < 1 and so

y1−r =
(a
b

)1−r
= (1− t)1−r

= 1 + (r − 1)t+
r(r − 1)

2
t2 − r(1− r2)

6
t3 + · · · .

Since all terms of the series after the first element are negative we have

a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

2

(b− a)2

b
− r(1− r2)

6

(b− a)3

b2
.

�

As a conclusion a refinement of the Heinz inequality is given.

Corollary 2.2. Let a and b be positive numbers and 0 ≤ r ≤ 1.

(i) If b
2 < a < b then,

Hr(a, b) ≤
a+ b

2
+

r(r − 1)

2

(b− a)2

a
− r(r − 1)

4

(b− a)3

a2
.
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(ii) If a < b
2 then,

Hr(a, b) ≤
a+ b

2
+

r(r − 1)

2

(b− a)2

b
+

r(r − 1)

4

(b− a)3

b2
.

Proof. In (2.1) and (2.2) applying 1-r instead of r, two inequalities are obtained. By

adding and dividing by 2, these inequalities are proved. �

In the following, another refinement of the Young’s inequality is given. At first,

this lemma is needed.

Lemma 2.3. If r ∈ [0, 1] and x ∈ [−1, 1] then,

(1 + x)r ≤ 1 + rx+
r(r − 1)

8
x2.

Proof. By taking f(x) = (1 + x)r − 1− rx− r(r−1)
8 x2 we have

f(0) = 0 , f ′(x) = r(1 + x)r−1 − r − r(r − 1)

4
x

and

f ′′(x) =
r(r − 1)

4
[4(1 + x)r−2 − 1] < 0.

Consequently, f ′ decreases on the interval (−1, 1). Thus, f ′(x) > 0 for x ∈ (−1, 0)

and f ′(x) < 0 for x ∈ (0, 1). It then follows that f attains its minimum at zero.

Since, f(0) = 0, we have f(x) ≤ 0 for x ∈ [−1, 1]. �

Theorem 2.4. Let a and b be positive numbers and 0 ≤ r ≤ 1.

(i) If b
2 < a < b then,

(2.3) a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

8

(b− a)2

a
.

(ii) If a < b
2 then,

(2.4) a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

8

(b− a)2

b
.

Proof. (i) If b
2 < a < b then, by taking y = b

a = 1 + x, we have x ∈ (0, 1). Hence,

applying Lemma 2.3, the following inequality is obtained.

(
b

a
)r = (1 + x)r ≤ 1 + r(

b

a
− 1) +

r(r − 1)

8
(
b

a
− 1)2.

So we have

a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

8

(b− a)2

a
.
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(ii) If a < b
2 then, by taking y = a

b = 1− t, we have t ∈ (12 , 1). So, by Lemma 2.3

y1−r = (
a

b
)1−r = (1− t)1−r ≤ 1 + (r − 1)t+

r(r − 1)

8
t2.

This implies that

a1−rbr ≤ (1− r)a+ rb+
r(r − 1)

8

(b− a)2

b
.

�

Corollary 2.5. Let a and b be positive numbers and 0 ≤ r ≤ 1.

(i) If b
2 < a < b then,

Hr(a, b) ≤
a+ b

2
+

r(r − 1)

8

(b− a)2

a
.

(ii) If a < b
2 then,

Hr(a, b) ≤
a+ b

2
+

r(r − 1)

8

(b− a)2

b
.

Young’s inequality in operator algebras has been considered in [2] and references

therein. A determinant version of Young’s inequality is also known ([4], P. 467):

det(ArB1−r) ≤ det(rA+ (1− r)B).

Let Mn(C) be the space of n × n complex matrices. Recently, Kittaneh and

Manasrah, by inequality (1.1) for A,B ∈ Mn(C) which are positive definite, prove

that

det(ArB1−r) + rn0 det(A+B − 2A♯B) ≤ det(rA+ (1− r)B)

where, r0 = min{r, 1− r} and A♯B = B
1
2 (B− 1

2AB− 1
2 )

1
2B

1
2 is the geometric mean of

A and B.

In the following, as an application of Theorem 2.4, we prove the inequality for

positive definite matrices.

Theorem 2.6. Let A,B ∈ Mn(C) be positive definite and 0 ≤ r ≤ 1, if 1
2A < B < A

then

(2.5) det(ArB1−r) +
(r(r − 1)

8

)n
det(AB−1A+B − 2A) ≤ det(rA+ (1− r)B)

Also, if B < A
2 then

(2.6) det(ArB1−r) +
(r(r − 1)

8

)n
det(BA−1B +A− 2B) ≤ det(rA+ (1− r)B)
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Proof. (i): If 1
2A < B < A, then we have 1

2B
− 1

2AB− 1
2 < I < B− 1

2AB− 1
2 . So by

inequality (2.3)

rsj(B
− 1

2AB− 1
2 ) + (1− r) ≥ srj(B

− 1
2AB− 1

2 ) +
r(1− r)

8
(sj(B

− 1
2AB− 1

2 )− 1)2,

where s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) are the singular values of A. This implies that

det
(
rB− 1

2AB− 1
2 + (1− r)I

)
=

n∏
j=1

(
rsj(B

− 1
2AB− 1

2 + 1− r
)

≥
n∏

j=1

srj(B
− 1

2AB− 1
2 ) +

r(1− r)

8

(
sj(B

− 1
2AB− 1

2 )− 1
)2

≥
n∏

j=1

srj(B
− 1

2AB− 1
2 ) +

(r(1− r)

8

)n
n∏

j=1

(
sj(B

− 1
2AB− 1

2 )− 1
)2

= det(B− 1
2AB− 1

2 )r +
(r(1− r)

8

)n
det(B− 1

2AB− 1
2 − I)2.

By multiplying det(B), the proof of inequality (2.5) is completed.

(ii) If B < A
2 , then we have I

2 > A− 1
2BA− 1

2 . So by inequality (2.4) and similar to

(i), the inequality (2.6) is proved. �

The Hilbert-Schmidt norm of a matrix A = [aij ] ∈ Mn(C) is defined by

∥A∥2 =
( n∑

i,j=1

|aij |2
) 1

2
.

This norm is unitarilly invariant, i.e.,

∥UAV ∥2 = ∥A∥2

for all unitary matrices U, V ∈ Mn(C). By using the singular value decomposition

of A, we have

∥A∥2 =
( n∑

j=1

s2j (A)
) 1

2
,

where, s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) are the singular values of A (the eigenvalues of

|A| = (A∗A)
1
2 ). In the following, the operator form of Theorem 2.4 will be given.

Theorem 2.7. Suppose that A,B,X ∈ Mn(C) such that A and B are positive

semidefinite invertible matrices and r ∈ [0, 1].
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(i) If B < 2A < 2B, then

∥A1−rXBr∥22 ≤ (1−r)∥AX∥22+r∥XB∥22+
r(r − 1)

8

(
∥A−1XB2∥22+∥AX∥22−2∥XB∥22

)
.

(ii) If 2A < B, then

∥A1−rXBr∥22 ≤ (1−r)∥AX∥22+r∥XB∥22+
r(r − 1)

8

(
∥B−1XA2∥22+∥XB∥22−2∥AX∥22

)
.

Proof. There are unitary matrices U and V such that A = UΛU∗ and B = VMV ∗,

so that

λ = diag(λ1, · · · , λn),

M = diag(m1, · · · ,mn)

where, λi,mj ≥ 0. Let Y = U∗XV = [yij ]. Then

∥A1−rXBr∥22 = ∥U [λi
1−ryijmj ]V

∗∥22

=
n∑

i,j=1

(λ2
i )

1−r(m2
j )

r|yij |2

≤
n∑

i,j=1

(1− r)(λ2
i )|yij |2 + rm2

j |yij |2 +
r(r − 1)

8

(m2
j − λ2

i )
2

λ2
i

|yij |2.

On the other hand, since AX = UΛY V ∗ and XB = UYMV ∗ and A−1XB2 =

UΛ−1YM2V ∗, we have

∥AX∥22 = ∥UΛY V ∗∥22 = ∥ΛY ∥22 =
n∑

i,j=1

(λ2
i )|yij |2,

∥XB∥22 = ∥UYMV ∗∥22 = ∥YM∥22 =
n∑

i,j=1

m2
i |yij |2,

∥A−1XB2∥ = ∥UΛ−1YM2V ∗∥ =
n∑

i,j=1

m4
j |yij |2

λ2
i

.

By using the above equalities, the proof of the first part of the theorem is completed.

The second part is proved similarly.

�



46 Alireza Moazzen

Let A and B be two positive operators, r ∈ [0, 1]. r-weighted arithmetic mean of

A and B, denoted by A∇rB is defined as

A∇rB = (1− r)A+ rB.

For an invertible operator A, r-geometric mean of A and B, denoted by A♯rB, is

defined as

A♯rB = A
1
2 (A− 1

2BA− 1
2 )rA

1
2 .

The power mean A♯rB is defined by F. Kubo and T. Ando [6]. In the special case

r = 1
2 , the index is omitted.

There are several inequalities around A♯rB and A∇rB. Recently, J. Zhao and J.

Wu [7], for two positive invertible operators A and B of B(H) and r ∈ [0, 1], proved

that:

If 0 < r < 1
2 then

r0(A♯B − 2A♯ 1
4
B +A) + 2r(A∇B −A♯B) +A♯rB ≤ A∇rB,

if 1
2 < r < 1, then

r0(A♯B − 2A♯ 3
4
B +B) + 2(1− r)(A∇B −A♯B) +A♯rB ≤ A∇rB,

In the sequel, by the above refinements of the Young’s inequality and the following

lemma, some inequalities concerning A♯rB and A∇rB will be obtained.

Lemma 2.8 ([3]). Let X ∈ B(H) be self-adjoint and let f and g be continuous

functions such that f(t) ≥ g(t) for all t ∈ Sp(X)(the spectrum of X). Then f(X) ≥
g(X).

Theorem 2.9. Let A,B ∈ B(H) be two positive invertible operators and r ∈ (0, 1).

(i) If B < 2A < 2B, then

A♯rB ≤ A∇rB +
r(r − 1)(r − 2)

6
(BA−1)2B +

r(r − 1)(3− r)

2
BA−1B

+
r(r − 1)(r − 4)

2
B +

r(r − 1)(5− r)

6
I.(2.7)

(ii) If 2A < B, then

A♯rB ≤ A∇rB +
r(1− r2)

6
(AB−1)2A+

r(r − 1)(r + 3)

4
AB−1A

−r(r − 1)(r + 3)

2
B +

r(r − 1)(5− r)

6
I.(2.8)
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Proof. (i) By Theorem 2.1 if 1 < x < 2 then,

xr ≤ (1− r) + rx+
r(r − 1)

2
(x− 1)2 +

r(r − 1)(r − 2)

6
(x− 1)3.

Taking X = A− 1
2BA− 1

2 , we have I < X < 2I and so Sp(X) ⊆ (0, 1). Hence, by

Lemma 2.8

Xr ≤ (1− r) + rX +
r(r − 1)

2
(X − 1)2 +

r(r − 1)(r − 2)

6
(X − 1)3.

Multiplying both sides of the above inequality by A
1
2 , inequality (2.7) is deduced.

(ii) If y > 2, by Theorem 2.1

y1−r ≤ (1− r)y + r +
r(r − 1)

2
(y − 1)2 +

r(1− r2)

6
(y − 1)3.

Taking Y = B− 1
2AB− 1

2 we have Y > 2I and so Sp(Y ) ⊆ (2,∞). Hence, by Lemma

2.8

Y 1−r ≤ (1− r)Y + r +
r(r − 1)

2
(Y − 1)2 +

r(1− r2)

6
(Y − 1)3.

Multiplying both sides of the above inequality by B
1
2 and since A♯rB = B♯1−rA,

inequality (2.8) is deduced. �

Theorem 2.10. Let A,B ∈ B(H) be two positive invertible operators and r ∈ (0, 1).

(i) If B < 2A < 2B, then

A♯rB +B♯rA

2
≤ A∇B +

r(r − 1)

8
(BA−1B − 2B + I).(2.9)

(ii) If 2A < B, then

A♯rB +B♯rA

2
≤ A∇B +

r(r − 1)

8
(AB−1A− 2A+ I).(2.10)

Proof. (i) By Corollary 2.5 if 1 < x < 2 then,

x1−r + xr

2
≤ x+ 1

2
+

r(r − 1)

8
(x− 1)2.

If A < B < 2A then, by taking X = A− 1
2BA− 1

2 , we have I < X < 2I and so

Sp(X) ⊆ (0, 1). Hence, by Lemma 2.8

X1−r +Xr

2
≤ X + 1

2
+

r(r − 1)

8
(X − 1)2.

Multiplying both sides of the above inequality by A
1
2 , inequality (2.9) is deduced.

(ii) If y > 2, by Corollary 2.5

yr + y1−r

2
≤ y + 1

2
+

r(r − 1)

8
(y − 1)2.
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Taking Y = B− 1
2AB− 1

2 we have Y > 2I and so Sp(Y ) ⊆ (2,∞). Hence, by Lemma

2.8
Y r + Y 1−r

2
≤ Y + 1

2
+

r(r − 1)

8
(Y − 1)2.

Multiplying both sides of the above inequality by B
1
2 and since A♯rB = B♯1−rA,

inequality (2.10) is deduced. �
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