• Title/Summary/Keyword: operational transportation vehicles

Search Result 39, Processing Time 0.027 seconds

Combining Vehicle Routing with Forwarding : Extension of the Vehicle Routing Problem by Different Types of Sub-contraction

  • Kopfer, Herbert;Wang, Xin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The efficiency of transportation requests fulfillment can be increased through extending the problem of vehicle routing and scheduling by the possibility of subcontracting a part of the requests to external carriers. This problem extension transforms the usual vehicle routing and scheduling problems to the more general integrated operational transportation problems. In this contribution, we analyze the motivation, the chances, the realization, and the challenges of the integrated operational planning and report on experiments for extending the plain Vehicle Routing Problem to a corresponding problem combining vehicle routing and request forwarding by means of different sub-contraction types. The extended problem is formalized as a mixed integer linear programming model and solved by a commercial mathematical programming solver. The computational results show tremendous costs savings even for small problem instances by allowing subcontracting. Additionally, the performed experiments for the operational transportation planning are used for an analysis of the decision on the optimal fleet size for own vehicles and regularly hired vehicles.

A Study on Operational Concepts on Final Assembly-Transportation-Erection Methodology of Launch Vehicles (발사체 총조립-이송-기립 운용개념 변화에 대한 연구)

  • Daerae Kim;Chankyoung Lim;Seongpil Yang;Yeongho Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.52-62
    • /
    • 2022
  • A launch vehicle is a one of the biggest hardware among the products of human technology. For huge size launch vehicles, to transport to Launch Complex and to erect on launch pad precisely and safely is very critical issue. Therefore, a final assembly, transportation, erection and holding in vertical position in launch pad requires very precise operational technology, processes and related aggregates. Those operational concept has been developed to comply with the requirement of each launch vehicle and technology level at that time. In this paper, a progress of operational methodology in global launch vehicles are described. In addition, methodologies used on the KSLV-1 Naro and the KSLV-II Nuri launch vehicle are introduced.

A Study on the Effects of Flexible Operation of Imported Grain Transportation Vehicles on Logistics Costs by Considering Empty Transfer Rates (공차율을 고려한 유연한 수입곡물 화물차운영이 물류비용에 미치는 영향에 관한 연구)

  • Kim, Byeong Chan;Yang, Dae Yong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.193-203
    • /
    • 2012
  • This study analyzed regular transportation costs between port warehouses and processing plants and between processing plants and central distribution centers and further transportation costs relations according to empty transfer rates in each circulation by examining the distribution routes of imported grain including wheat, barley, corn, and soybean, namely port warehouses, processing plants, and central distribution centers. Based on the results, the study compared and reviewed the logistics transportation costs. The analysis results of the alternative model show that logistics operational costs could be considerably cut down by introducing a flexible vehicle transportation operational method, which is to change the vehicle loading parts for proper substitute transportation after unloading and transport them to other locations such as central distribution centers instead of returning empty, as an alternative to high operational costs deriving from empty vehicle operation in each circulation after unloading items in case of transportation of imported grain and processed items. The results allow for a more realistic approach to general problems with large-scale distribution network operation and provide a theoretical foundation to serve as a guide to establish policies for corporate operation of imported grain logistics systems.

Unified approach to predict the dynamic performance of transportation system considering wind effects

  • Chen, S.R.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.279-292
    • /
    • 2006
  • Natural hazards, including the wind hazard and others, threaten the integrity of the modern society. A transportation system usually consists of roadways, bridges and related vehicles. Harsh environmental conditions, caused by such as wind, exist in the real world frequently and affect the dynamic performance of the transportation system through their interactions. Long-span bridges are usually the backbones of transportation lines. In windy conditions, the information about the dynamic performance of bridges and vehicles considering full interactions of environmental factors is very essential for people to assess the overall operational conditions and safety risks of the transportation lines. Most of existent approaches target specifically at several isolated tasks considering partial interaction effects. In order to improve the understanding of these related-in-nature problems integrally as well as the consistency of different approaches, a unified approach to integrally predict the dynamic performance of long-span bridges and vehicles under wind is introduced. Such an approach can be used as a general platform to predict the dynamic responses of vehicles and bridges under various situations through adopting both commercial and in-house software. Dynamic interaction effects can be fully considered automatically for each situation. An example of a prototype bridge in US is given for the purpose of demonstration.

A green transportation model in reverse logistics network and its comparative assessment for environmental impacts (역물류 네트워크에서의 친환경 운송 모델 개발 및 환경영향평가 비교 분석)

  • Kim, Ki Hong;Shin, Seoung-Jun;Chung, Byung Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.239-246
    • /
    • 2015
  • Enforced environmental regulations call for extending the domain of manufacturers' responsibility to the entire product life cycle. To comply with the environmental regulations, manufacturers have constructed reverse logistics networks to re-collect their leftover waste for recycling consumed resources. However, the operational activities associated with storage, loading and transportation processes within the networks inevitably impose environmental burdens. Particularly, the transportation process largely influences environmental performance due to perpetual uses of transportation vehicles. Therefore, there is a need to develop an environmentally-conscious transportation model that can efficiently manage the uses of transportation vehicles. Additionally, it is vital to analyze its significances of environmental performance to compare quantitatively it with existing models. This paper proposes a transportation model for improving environmental performance in a reverse logistics network. This paper also presents a case study to perform its comparative analysis using Life Cycle Assessment that evaluates potential environmental impacts of a product system.

A Methodology to Establish Operational Strategies for Truck Platoonings on Freeway On-ramp Areas (고속도로 유입연결로 구간 화물차 군집운영전략 수립 방안 연구)

  • LEE, Seolyoung;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.67-85
    • /
    • 2018
  • Vehicle platooning through wireless communication and automated driving technology has become realized. Platooning is a technique in which several vehicles travel at regular intervals while maintaining a minimum safety distance. Truck platooning is of keen interest because it contributes to preventing truck crashes and reducing vehicle emissions, in addition to the increase in truck flow capacity. However, it should be noted that interactions between vehicle platoons and adjacent manually-driven vehicles (MV) significantly give an impact on the performance of traffic flow. In particular, when vehicles entering from on-ramp attempt to merge into the mainstream of freeway, proper interactions by adjusting platoon size and inter-platoon spacing are required to maximize traffic performance. This study developed a methodology for establishing operational strategies for truck platoonings on freeway on-ramp areas. Average speed and conflict rate were used as measure of effectiveness (MOE) to evaluate operational efficiency and safety. Microscopic traffic simulation experiments using VISSIM were conducted to evaluate the effectiveness of various platooning scenarios. A decision making process for selecting better platoon operations to satisfy operations and safety requirements was proposed. It was revealed that a platoon operating scenario with 50m inter-platoon spacing and the platoon consisting of 6 vehicles outperformed other scenarios. The proposed methodology would effectively support the realization of novel traffic management concepts in the era of automated driving environments.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

A Vehicle Dispatching for Dynamic Freight Transportation in Container Terminals (컨테이너 터미널 동적 운송 환경에서의 실시간 차량 운행 계획)

  • Koo Pyung-Hoi;Lee Woon-Seook;Koh Shie-Gheun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.67-80
    • /
    • 2005
  • This paper deals with a container terminal where containers are discharged by quay cranes from a ship and transported by a fleet of vehicles to the terminal yard. Since container terminals are fully utilized in general, It is important to increase terminal throughput by discharging the containers out of the ship without any delay, At the operational level, it should be decided which vehicle transports which container. The vehicle dispatching decision should be carefully made since the container discharging time increases when the quay cranes wait idle for the vehicles. This paper presents vehicle dispatching heuristics with the objective of minimizing the total container discharging time. The heuristics are based on a network flow model and a look-ahead concept. Through some experiments, the performance of the dispatching methods is evaluated.

Analysis of Impacts of Aggressive Driving Events on Traffic Stream Using Driving and Traffic Simulations (주행 및 교통 시뮬레이션을 이용한 공격운전이 교통류에 미치는 영향 분석)

  • PARK, Subin;KIM, Yunjong;OH, Cheol;CHOI, Saerona
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.3
    • /
    • pp.169-183
    • /
    • 2018
  • Aggressive driving leads to a greater crash potential because it threatens surrounding vehicles. This study conducted traffic simulation experiments using driving behavior data obtained from multi-agent driving simulations. VISSIM traffic simulator and surrogate safety assessment model (SSAM) were used to identify the impacts of aggressive driving on traffic stream in terms of safety and operational efficiency. Market penetration rates (MPR) of aggressive driving vehicle, coupled with various traffic conditions, were taken into consideration in analyzing the impacts. As expected, it was identified that aggressive driving vehicles tended to deteriorate the traffic safety performance. From the perspective of operational efficiency, interesting results were observable. Under level of service (LOS) A, B, and C, it was observed that the average travel speed increased with greater MPRs. Conversely, the average travel speed decreased with under LOS D and E conditions. The outcome of this study would be effectively used for developing safety-related policies for reducing aggressive driving behavior.

Suggestion of Evaluation Elements Based on ODD for Automated Vehicles Safety Verification : Case of K-City (자율주행자동차 안전성 검증을 위한 ODD 기반 평가요소 제시 : K-City를 중심으로)

  • Kim, Inyoung;Ko, Hangeom;Yun, Jae-Woong;Lee, Yoseph;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.197-217
    • /
    • 2022
  • As automated vehicle(AV) accidents continue to occur, the importance of safety verification to ensure the safety and reliability of automated driving system(ADS) is being emphasized. In order to encure safety and reliability, it is necessary to define an operational design domain(ODD) of the ADS and verify the safety of the ADS while evaluating its ability to respond in situations outside of the ODD. To this, international associations such as SAE, BSI, NHTSA, ISO, etc. stipulate ODD standards. However, in Korea, there is no standard for the ODD, so automated vehicles's ODD expression method and safety verification and evaluation are not properly conducted. Therefore, this study analyzed overseas ODD standards and selected suitable ODD for safety verification and evaluation, and presented evaluation elements for ADS safety verification and evaluation. In particular, evaluation elements were selected by analyzing the evaluation environment of the automated driving experimental city (K-City) that supports the development of ADS technology.