• Title/Summary/Keyword: operational scenario

Search Result 153, Processing Time 0.026 seconds

Risk Evaluation of Monopotassium Phosphate (MKP) and Bentonite Application via the Mobility Reduction of Soil TNT and Heavy Metals (제일인산칼륨과 벤토나이트 처리를 통한 토양 내 TNT와 중금속 이동성 및 인체위해도 저감 기술)

  • Jung, Jae-Woong;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2015
  • Simultaneous mobility reduction of explosives and heavy metals in an operational range by monopotassium phosphate (MKP) and bentonite spreading technology was investigated. Potassium ion and phosphate ion in MKP act as explosives sorption enhancer and insoluble heavy metal phosphate formation, respectively, while bentonite acts as the explosives adsorbent. Then, the decrease in surface water concentration of the pollutants and resulting risk reduction for local residents of the operational range, by MKP/bentonite application was estimated. Under untreated scenario, the noncancer hazard index (HI) exceeded unity on February, July and August, mainly due to 2,4,6-trinitrotoluene (TNT); however, MKP/bentonite treatment was expected to lower the noncancer hazard index by decreasing the surface water concentration of explosives and heavy metals (especially TNT). For example, on July, estimated surface water concentration and HI of TNT were 0.01 mg/L and 1.1, respectively, meanwhile the sorption coefficient of TNT was 3.9 mg1−nkg−1Ln. However, by MKP/bentonite treatment, the TNT sorption coefficient increased to 113.8 mg1−nkg−1Ln and the surface water concentration and HI decreased to about 0.002 mg/L and 0.2, respectively. Based on the result, it can be concluded that MKP/bentonite spreading is a benign technology that can mitigate the risk posed by the pollutants migration from operational ranges.

Emergy-Simulation Based Building Retrofit

  • Hwang, Yi
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper introduces emergy(spelled with "m") that is a new environmental indicator in architecture, aiming to clarify conflicting claims of building design components in the process of energy-retrofit. Much of design practitioners' attention on low energy use in operational phases, may simply shift the lowered environmental impact within the building boundary to large consumption of energy in another area. Specifically, building energy reduction strategies without a holistic view starting from natural formation, may lead to the depletion of non-renewable geobiological sources (e.g. minerals, fossil fuels, etc.), which leaves a building with an isolated energy-efficient object. Therefore, to overcome the narrow outlook, this research discusses the total ecological impact of a building which embraces all process energy as well as environmental cost represented by emergy. A case study has been conducted to explore emergy-driven design work. In comparison with operational energy-driven scenarios, the results elucidate how energy and emergy-oriented decision-making bring about different design results, and quantify building components' emergy contribution in the end. An average-size ($101.9m^2$) single family house located in South Korea was sampled as a benchmark case, and the analysis of energy and material use was conducted for establishment of the baseline. Adoption of the small building is effective for the goal of study since this research intends to measure environmental impact according to variation of passive design elements (windows size, building orientation, wall materials) with new metric (emergy) regardless of mechanical systems. Performance simulations of operational energy were developed and analyzed separately from the calculation of emergy magnitudes in building construction, and then the total emergy demand of each proposed design was evaluated. Emergy synthesis results verify that the least operational energy scenario requires greater investment in indirect energy in construction, which clearly reveals that efficiency gains are likely to be overwhelmed by increment of material flows. This result places importance on consideration of indirect energy use underscoring necessity of emergy evaluation towards the environment-friendly building in broader sense.

Model-based Analysis of Urban Community Logistics Courier Terminal System using Vacant Space

  • Park, Jae Min;Kim, Young Hoon;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.89-97
    • /
    • 2022
  • The growth of online market is accelerating due to the development of technology and the era of pandemic. In order to deliver the ordered product to customers courier service should be used. In addition, the courier logistics market is growing with the growth of the online market. With the growth of the logistics market, traffic and environmental problems are emerging as social issues. Logistics technology of urban community logistics courier terminal system utilizing vacant space in the city has been developed as a new alternative to environment and traffic problems by increasing logistics efficiency in the city area. In this study, we propose a concept of a system that performs operational concept definition and scenario analysis by applying model-based perspective analysis to urban community logistics courier terminal system under development. Through this study, we defined the operating concept of the urban community logistics courier terminal, which is the target of development, and defined the scenario for system operation by grasping the structure and function of the system and applied it to system development.

Research on Deriving Requirements through Operational Scenarios and Interface Analysis of Future Logistics Transportation System based on Underground Tunnels (지하터널기반 미래물류 운송체계의 운영 시나리오 및 인터페이스 분석을 통한 요구사항 도출 연구)

  • Myung Sung Kim; Sung Jin Lee;Young Min Kim;Na Hyun Yi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.65-75
    • /
    • 2024
  • As the demand for logistics services increases rapidly in modern society, the existing freight delivery system through road transportation is caused various problems such as traffic congestion and greenhouse gas emissions. To solve that, the development of an 'underground logistics tunnel-based cargo transportation system' is currently being considered in Korea. In order to build a new concept stable and safe logistics system, derive system design requirements and functional specifications, and reflect them at the development of target system. In this study, to make foundation for development of an "underground logistics tunnel-based cargo transportation system," define system components through analysis from a hierarchical perspective, and the functions of each component were analyzed and defined. We identified what interfaces the components have at each stage of the operating process. Lastly, we defined a detailed operation scenario based on the previously derived results, deriving target system functional requirements.

A Study on the Operational Plan and Acquisition Method for CO2 Carrier by Retrofitting Existing Vessels and New Ship-Building (중고선 개조와 신조에 의한 CO2 운송선 확보 및 운용방안에 관한 연구)

  • Shin, Myung-Soo;Park, Beom Jin;Ki, Min Suk;Lee, Dae Hak
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • This paper presents the feasibility study on $CO_2$ carrier for carbon dioxide marine geological storage. Conceptual design was carried out to acquire $CO_2$ carriers by retrofitting existing vessels and new ship-building. Based on conceptual design, the acquisition cost of $CO_2$ carriers was estimated. Finally, necessary expense and number of ships were estimated based on operational plans for the assumed scenario.

On the Derivation of System Requirements from the Artifacts of the System Development in the Urban Transit Standardization Program (도시철도표준화사업에서 시스템개발 산출물로부터 시스템 요구사항 도출 방안에 관한 연구)

  • Choi, Sang-Wook;Lee, Jae-Chon;Lee, Woo-Dong;Chung, Jong-Duk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1791-1797
    • /
    • 2010
  • The Urban Transit Standardization Program has been supported by the Ministry of Land, Transport and Maritime Affairs. The Program consists of dozen or more projects and thus is quite complex, which implies that the program success heavily depends upon the effective management of various artifacts during the development. Particularly, in the complex systems development, developing and managing requirements is very important throughout the whole system life cycle. The requirements can be the basis of the design changes to be made later as well as the test and evaluation to be performed in the subsequent stages of the systems development. As such, the derivation of the system's requirement based on the needs from the customers, or stakeholder in a broad sense must be done properly. In particular, notice that the system is being developed but the system requirements are not fully available for some reasons. To complement this situation is the purpose of the study. To derive proper requirements effectively in the process of development, this paper proposes to draw up scenario using the output of the system under development and to utilize the use case diagrams and operational scenarios.

  • PDF

Development of Efficient Operational Mode for Wind-Diesel Hybrid System

  • Asghar, Furqan;Kim, Se-Yoon;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.554-561
    • /
    • 2014
  • Hybrid wind Diesel stand-alone power systems are considered economically viable and effective to create balance between production and load demand in remote areas where the wind speed is considerable for electric generation, and also, electric energy is not easily available from the grid. In Wind diesel hybrid system, the wind energy system is the main constitute and diesel system forms the back up. This type of hybrid power system saves fuel cost, improves power capacity to meet the increasing demand and maintains the continuity of supply in the system. Problem we face in this system is that even after producing enough power through wind turbine system, considerable portion of this power needs to be dumped due to short term oversupply of power and to maintain the frequency within close tolerances. As a result remaining portion of total energy supplied comes from the diesel generator to overcome the temporal energy shortage. This scenario decreases the overall efficiency of hybrid power system. In this study, efficient Simulink modeling for wind-diesel hybrid system is proposed and some simulations study is carried out to verify the feasibility of the proposed scheme.

Design and Prototype Implementation of the Curved Plates Flow Tracking and Monitoring System using RFID (RFID 기술을 이용한 곡가공 부재 추적 및 모니터링 시스템 설계 및 프로토타입의 구현)

  • Noh, Jac-Kyou;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.424-433
    • /
    • 2009
  • In order to improve productivity and efficiency of ship production process, production technology converged with Information Technology can be considered. Mid-term scheduling based on long-term schedule of ship building and execution planning based on short-term production schedule have an important role in ship production processes and techniques. However, data used in the scheduling are from the experiences of the past, cognitive, and often inaccurate, moreover the updates of the data by formatted documents are not being performed efficiently. This paper designs the tracking and monitoring system for the curved plates forming process with shop level. At first step to it, we redefine and analyze the curved plates forming process by using SysML. From the definition and analysis of the curved plates forming process, we design the system with respect to operational view considering operational environment and interactions between systems included and scenario about operation, and with respect to system view considering functionalities and interfaces of the system. In order to study the feasibility of the system designed, a prototype of the system has been implemented with 13.56 MHz RHD hardware and application software.

A Basic Study on the Selection of Required Operational Capability for Attack Drones of Army TIGER Units Using AHP Technique (AHP 기법을 이용한 Army TIGER 부대 공격용 드론의 작전요구성능 선정에 관한 기초 연구)

  • Jinho Lee;Seongjin Kwon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 2023
  • The importance of each warfighting function for Army TIGER unit attack drones is measured using the AHP technique. As a result, the importance of attack drones is high in the order of maneuver, firepower, intelligence, command/control, protection, and operation sustainment, but the importance of maneuver, firepower, and intelligence are almost similar. In addition, it is analyzed that attack drones capable of carrying out day and night missions by being equipped with an EO/IR sensor and being commanded/controlled in conjunction with the C4I system to eliminate threats with small bombs or aircraft collisions is needed. Finally, based on the results of this study, a virtual battle scenario for attack drones is proposed.

A Study on Mission Analysis in Consideration of Effectiveness Measurement of UAV System Operations (UAV 체계운용효과도를 고려한 임무분석 연구)

  • Choi, Kwan-Seon;Jeong, Ha-Gyo;Park, Tae-Yoo;Jeon, Je-Hwan
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.119-128
    • /
    • 2011
  • This paper deals with a study on mission analysis considering the effectiveness measurement of UAV system operations. This mission analysis process is composed of 5 steps; (1) creation of a base model in MANA, (2) design of input parameter set using experiment design, (3) mapping input parameter set to the MANA scenario file, (4) data farming and model run in batch process, and (5) statistical analysis of the simulation result. In the result of this study, the effect of input parameter to the dependent parameter was shown to decrease in the order classification range, sweep width, height, speed, FOV(Field of view), and classification probability. The study also shows that the operational effectiveness of an improved scenario proposed can increase 10.2% from the base scenario.