• Title/Summary/Keyword: operational ground

Search Result 296, Processing Time 0.028 seconds

Accuracy Evaluation of Composite Hybrid Surface Rainfall (HSR) Using KMA Weather Radar Network (기상청 기상레이더 관측망을 이용한 합성 하이브리드 고도면 강우량(HSR)의 정확도 검증)

  • Lyu, Geunsu;Jung, Sung-Hwa;Oh, Young-a;Park, Hong-Mok;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.496-510
    • /
    • 2017
  • This study presents a new nationwide quantitative precipitation estimation (QPE) based on the hybrid surface rainfall (HSR) technique using the weather radar network of Korea Meteorological Administration (KMA). This new nationwide HSR is characterized by the synthesis of reflectivity at the hybrid surface that is not affected by ground clutter, beam blockage, non-meteorological echoes, and bright band. The nationwide HSR is classified into static (STATIC) and dynamic HSR (DYNAMIC) mosaic depending on employing a quality control process, which is based on the fuzzy logic approach for single-polarization radar and the spatial texture technique for dual-polarization radar. The STATIC and DYNAMIC were evaluated by comparing with official and operational radar rainfall mosaic (MOSAIC) of KMA for 10 rainfall events from May to October 2014. The correlation coefficients within the block region of STATIC, DYNAMIC and MOSAIC are 0.52, 0.78, and 0.69, respectively, and their mean relative errors are 34.08, 30.08, and 40.71%.

Aeroelastic Compatibility Substantiation of Aircraft External Stores Using the Dynamic Characteristic Data from Ground Vibration Test (지상진동시험 동특성 데이터를 활용한 항공기 외부장착물의 공력탄성학적 적합성 입증)

  • Lim, Hyun Tae;Kwon, Jae Ryong;Byun, Kwan Hwa;Kim, Hee Joong;Kim, Jae hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • The aeroelastic stability of a fighter type aircraft can be severly affected by the store mass, aerodynamic characteristics, and store combinations. Hence, the stability for the all store configurations must be substantiated before the aircraft in service. For the aeroelastic analysis, the design data and information for the aircraft structure, mass distribution, control surface characteristics, and external shape etc. are required. This is the reason that the store compatibility substantiations by a third party are restricted. However, according to the change of operational environment or the improvement of avionic technology, a new external store is developed and it should be installed on an aircraft without the support from the original supplier. This paper describe the process to substantiate the aeroelastic compatibility between a new external store and an imported aircraft whose design data is not available to a third party operating the aircraft.

Comparative Evaluation of UAV NIR Imagery versusin-situ Point Photo in Surveying Urban Tributary Vegetation (도심소하천 식생조사에서 현장사진과 UAV 근적외선 영상의 비교평가)

  • Lee, Jung-Joo;Hwang, Young-Seok;Park, Seong-Il;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.475-488
    • /
    • 2018
  • Surveying urban tributary vegetation is based mainly on field sampling at present. The tributary vegetation survey integrating UAV NIR(Unmanned Aerial Vehicle Near Infrared Radiance) imagery and in-situ point photo has received only limited attentions from the field ecologist. The reason for this could be the largely undemonstrated applicability of UAV NIR imagery by the field ecologist as a monitoring tool for urban tributary vegetation. The principal advantage of UAV NIR imagery as a remote sensor is to provide, in a cost-effective manner, information required for a very narrow swath target such as urban tributary (10m width or so), utilizing very low altitude flight, real-time geo-referencing and stereo imaging. An exhaustive and realistic comparison of the two techniques was conducted, based on operational customer requirement of urban tributary vegetation survey: synoptic information, ground detail and quantitative data collection. UAV NIR imagery made it possible to identify area-wide patterns of the major plant communities subject to many different influences (e.g. artificial land use pattern), which cannot be acquired by traditional field sampling. Although field survey has already gained worldwide recognition by plant ecologists as a typical method of urban tributary vegetation monitoring, this approach did not provide a level of information that is either scientifically reliable or economically feasible in terms of urban tributary vegetation (e.g. remedial field works). It is anticipated that this research output could be used as a valuable reference for area-wide information obtained by UAV NIR imagery in urban tributary vegetation survey.

A study on the improvement of Auxiliary Power Unit auto-shutdown of T-50 series aircraft based on analysis of ECU response characteristics (ECU 응답특성 분석을 통한 T-50 계열 항공기 보조동력장치 자동 꺼짐 개선에 관한 연구)

  • Park, Sung-Jae;Yoo, In-Je;Choi, Su-Jin;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.640-646
    • /
    • 2017
  • A GEN TEST of the auxiliary power unit of a T-50 series aircraft is performed as part of the operational test of its emergency power system on the ground before flight. At this time, the auxiliary power unit should be automatically turned off via the response signal of the ECU when power is not normally supplied to the emergency power system. If the correct operation of the emergency power system cannot be confirmed on the ground, it is not possible to proceed with the flight. This kind of defect is a major factor causing the operation rate of the aircraft to be decreased. The defect code identified by the ECU was confirmed as a defect in the inverter. However, the same defect was found after replacing the inverter. This report presents an improved method of identifying the cause of the defect by analyzing the response characteristics of the ECU and emergency power system and allows the ECU to be recognized as the cause of the defect if the inverter does not generate a voltage within a certain time. Also, the application of the improved method confirmed that it can satisfy the output request time of the emergency power system and effectively prevent the auto-shutdown of the auxiliary power unit.

Efficiency of Geothermal Energy Generation Assessed from Measurements of Deep Depth Geothermal Conductivity (고심도 지중열전도도에 의한 지열 응용의 효율성)

  • Cho, Heuy-Nam;Lee, Dal-Heui;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2012
  • The objectives of this study were to test geothermal conductivity (k), water velocity, water quantity, and pipe pressure from a ground heat exchanger in the field, and then to analyze these data in relation to the effectiveness and economical efficiency for application of geothermal energy. After installation of the apparatus required for field tests, geothermal conductivity values were obtained from three different cases (second, third, and fourth). The k values of the second case (506 m depth) and third case (151 m depth) are approximately 2.9 and 2.8, respectively. The k value of the fourth case (506 m depth, double pipe) is 2.5, which is similar to the second and third cases. This result indicates that hole depth is a critical factor for geothermal applications. Analysis of the field data (k, water velocity, water quantity, and pipe pressure) reveals that a single geothermal system at 506 m depth is more economically efficient than three geothermal systems at depths intervals of 151 m. Although it is more expensive to install a geothermal system at 506 m depth than at 151 m depth, test results showed that the geothermal system of the fourth case (506 m, double pipe) is more economically efficient than the system at 151 m depth. Considering the optional cost of maintenance, which is a non-operational expense, the geothermal system of the fourth case is economically efficient. Large cities and areas with high land prices should make greater use of geothermal energy.

The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft (회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구)

  • Jang, Min-Uk;Lee, Yoon-Woo;Seo, Young-Jin;Ji, Sang-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.459-467
    • /
    • 2019
  • The landing gear is a component that requires a high degree of safety to protect the lives of rotary-wing aircraft and boarding personnel, absorbing the impact on transfer/landing and supporting the fuselage during taxiing and mooring on the ground. In particular, the wheel landing gear supporting the aircraft fuselage absorbs most of the shock from the ground through the shock absorber and tires. This ensures the safety of the pilot on board the aircraft and satisfies the operational capability of the soldiers between missions. During the operation of a rotary-wing aircraft, a number of piston pins, which are a component of the right main wheel landing gear, were found to be broken. Therefore, this study examined the root cause of the piston pin crack phenomenon found in the main wheel landing gear. For this purpose, various causes were identified from fracture surface analysis of a flight test. In particular, the possibility of cracking was analyzed based on the influence on the fastening torque with the drag beam component applied to the piston pin at the time of development. This ensures the fatigue life and structural integrity.

A Study on the Risk Assessment Occurred Possibly in a Civil Project (토목공사에서 발생 가능한 리스크평가에 관한 연구)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.59-66
    • /
    • 2011
  • A variety of risks caused by natural, technological and biological hazards threaten a business continuity of an organization. Business continuity is very important issue for all organizations and its proper management may control success and failure of an organization. Business continuity plan (BCP) may be defined as a management process which provides a business continuity. BCP includes risk management, operational continuity plan, response/ recovery, exercise/study and crisis communication, etc. Risk management is a systematic method to identify, analyze, evaluate and treat emergency risks and risk assessment is composed of identifying, analyzing and evaluating emergency risks. Risk assesment is the first step for making BCP. In this study, risk assessment has been conducted for sewer laying project. Through assessing risks, 18 risks that may threaten the construction operation are identified and it is founded to be that high levels of risks which require treatment are 'collapse of excavation surface', 'breakage of ground infra-facilities', 'noise & dust dispersion' and 'rise of material costs'.

The Development of Students Argumentation in Science Context (과학 맥락에서 학생간 논의과정의 발달)

  • Kang, Soon-Min;Lim, Jai-Hang;Kong, Young-Tae;Nam, Joung-Hee;Choi, Byoung-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.85-93
    • /
    • 2004
  • The purpose of this research was to investigate the change of argumentation of middle school students when they participated in argument tasks with CASE(Cognitive acceleration through science education) programs. Students argumentations were divided into two categories; 'explanatory argumentation' and 'dialogic argumentation'. Several argumentation components were used in their argumentation. Among argumentation components, claim and ground took place more than half of argumentation components. The percentage of 'dialogic argumentation' was lower than the percentage of 'explanatory argumentation'. The percentage of 'dialogic argumentation' was getting higher during CASE intervention. CASE programs had more effect on symmetric group than asymmetric group, however it was unstable. In general, participation ratio in argumentation of the formal operational student was high and the ratio in argumentation of the transitional student was getting higher.

Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval (OMI 구름 측정 자료들의 비교 분석과 그에 따른 오존 측정에 미치는 영향 평가)

  • Choi, Suhwan;Bak, Juseon;Kim, JaeHwan;Baek, KangHyun
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.117-127
    • /
    • 2015
  • The presences of clouds significantly influence the accuracy of ozone retrievals from satellite measurements. This study focuses on the influence of clouds on Ozone Monitoring instrument (OMI) ozone profile retrieval based on an optimal estimation. There are two operational OMI cloud products; OMCLDO2, based on absorption in $O_2-O_2$ at 477 nm, and OMCLDRR, based on filling in Fraunhofer lines by rotational Raman scattering (RRS) at 350 nm. Firstly, we characterize differences between $O_2-O_2$ and RRS effective cloud pressures using MODIS cloud optical thickness (COT), and then compare ozone profile retrievals with different cloud input data. $O_2-O_2$ cloud pressures are significantly smaller than RRS by ~200 hPa in thin clouds, which corresponds to either low COT or cloud fraction (CF). On the other hand, the effect of Optical centroid pressure (OCP) on ozone retrievals becomes significant at high CF. Tropospheric ozone retrievals could differ by up to ${\pm}10$ DU with the different cloud inputs. The layer column ozone below 300 hPa shows the cloud-induced ozone retrieval error of more than 20%. Finally, OMI total ozone is validated with respect to Brewer ground-based total ozone. A better agreement is observed when $O_2-O_2$ cloud data are used in OMI ozone profile retrieval algorithm. This is distinctly observed at low OCP and high CF.

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.