Browse > Article
http://dx.doi.org/10.9720/kseg.2012.22.2.233

Efficiency of Geothermal Energy Generation Assessed from Measurements of Deep Depth Geothermal Conductivity  

Cho, Heuy-Nam (G&G Technology Co., Ltd.)
Lee, Dal-Heui (Institute of Groundwater and Soil Environment, Yonsei University)
Jeong, Gyo-Cheol (Department of Earth and Environmental Sciences, Andong National University)
Publication Information
The Journal of Engineering Geology / v.22, no.2, 2012 , pp. 233-241 More about this Journal
Abstract
The objectives of this study were to test geothermal conductivity (k), water velocity, water quantity, and pipe pressure from a ground heat exchanger in the field, and then to analyze these data in relation to the effectiveness and economical efficiency for application of geothermal energy. After installation of the apparatus required for field tests, geothermal conductivity values were obtained from three different cases (second, third, and fourth). The k values of the second case (506 m depth) and third case (151 m depth) are approximately 2.9 and 2.8, respectively. The k value of the fourth case (506 m depth, double pipe) is 2.5, which is similar to the second and third cases. This result indicates that hole depth is a critical factor for geothermal applications. Analysis of the field data (k, water velocity, water quantity, and pipe pressure) reveals that a single geothermal system at 506 m depth is more economically efficient than three geothermal systems at depths intervals of 151 m. Although it is more expensive to install a geothermal system at 506 m depth than at 151 m depth, test results showed that the geothermal system of the fourth case (506 m, double pipe) is more economically efficient than the system at 151 m depth. Considering the optional cost of maintenance, which is a non-operational expense, the geothermal system of the fourth case is economically efficient. Large cities and areas with high land prices should make greater use of geothermal energy.
Keywords
renewable energy; geothermal application; deep depth; geothermal conductivity; ground heat exchanger;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김성균, 1984, 한반도 지열류량에 대한 약간의 고찰, 광산지질, 1, 109-114.
2 (사)한국지열협회, 2010a, 지열설비 시공능력 향상을 위한 시공가이드, 56p.
3 (사)한국지열협회, 2010b, 한국지열협회 창립 세미나 논문집, 3-40.
4 (사)한국지열협회, 2011, 공공기관설치 의무화에서 지열냉난방시스템의 고려사항 대응 방안, 44p.
5 산업자원부, 2004, 대체에너지기술개발 사업안내, 16p.
6 송윤호, 김형찬, 이상규, 2006, 한국의 지열 연구와 개발, 자원환경지질, 39, 485-494.   과학기술학회마을
7 심병완, 이철우, 2010, 천부 지열에너지로서의 지하 열에너지 저장 기술 동향, 자원환경지질, 43, 197-205.   과학기술학회마을
8 에너지관리공단, 2011, 신재생에너지백서, 134p.
9 지식경제부, 2011a, 에너지 및 재생에너지 개발 이용 보급 촉진법.
10 지식경제부, 2011b, 신재생 에너지 설비의 지원 등에 관한 기준 및 지침.
11 한국 에어콘 냉동기기 연구조합, 2010, 친환경신재생에너지 정책동향 및 응용기술전망, 98p.
12 한욱, 김영석, 1996, 한반도와 그 주변지역의 지열류량분포에 관한 연구, 지질학회지, 32, 267-275.
13 한정상, 한규상, 한혁상, 한찬, 2005, 지열펌프 냉난방 시스템, 도서출판 한림원, 69p.
14 한정상, 한찬, 2010, 지열에너지, 도서출판 한림원, 56p.
15 환경부, 2010, 지열 설비의 설치.운영 등에 관한 환경관리요령, 23p.
16 Barbier, E., 2002, Geothermal energy technology and current status: an overview, Renewable and Sustainable Energy Reviews, 6, 3-65.   DOI
17 Environmental Protection Agency Home Page, http://www.epa.gov/
18 Ever Source Technology Development Home Page, http://www.hyy.com.cn/
19 Geothermal Heat Pump Consortium Home Page, http://www.geoexchange.org/
20 Kazemann, R.G. and Whitehead, W.R., 1980, The spacing of heat pump supply and discharge wells, Groundwater Heat Pump Journal, 1, 25-36.
21 Lee, J.Y., 2009, Current status of ground source heat pumps in Korea, Renewable and Sustainable Energy Reviews, 13, 1560-1568.   DOI   ScienceOn
22 Lund, J.W., Freeston, D.H., L. Boyd, T.L., 2011, Direct utilization of geothermal energy 2010 worldwide review, Geothermics, 40, 159-180.   DOI   ScienceOn