• Title/Summary/Keyword: operational constraints

Search Result 169, Processing Time 0.024 seconds

Design and Specification of a Low-Level Control Software for an FMC Using Supervisory Control Theory

  • Kim, Sang-Kyun;Park, Jong-Hun;Park, Namkyu;Park, Jin-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.2
    • /
    • pp.159-178
    • /
    • 1995
  • Supervisory control is an approach based on formal language. it is used to model and control discrete event systems in which each discrete event process is represented as an automation. A supervisor is a generator that switches control patterns in such a way that a given discrete evenet process behaves in obedience to various constraints. A flexible manufacturing cell (FMC) is one of discrete evenet systems. Functions necessary for the operation of an FMC are characterized by operational components and informational compoments. The operational components can be modeled using the finite state machines and the informational components can be modeled using the abstract formalism which describes supporting operations of the cell controller. In this paper, we addressed function required for FMC control specification, software engineering aspects on FMC control based on supervisory control, a concept of event queue for resolving synchronization problem, and complexity reduction. Based on the mathematical model of an FMC. we synthesized the controller by integrating a supervisor for FMC with control specification that specifies event-driven operation of the cell controller. The proposed control scheme is stable mathematically so that the system always behaves on a controlled way even under the existence of uncontrollable events. Furthermore, using an event queue concept, we can solve a synchronization problem caused by the violation of instantaneity assumption of supervisory control theory in real life situation. And also, we can propotype a control software rapidly due to the modularity of the proposed control scheme.

  • PDF

An optimization framework to tackle challenging cargo accommodation tasks in space engineering

  • Fasano, Giorgio;Gastaldi, Cristina;Piras, Annamaria;Saia, Dario
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.197-218
    • /
    • 2014
  • Quite a demanding task frequently arises in space engineering, when dealing with the cargo accommodation of modules and vehicles. The objective of this effort usually aims at maximizing the loaded cargo, or, at least, at meeting the logistic requirements posed by the space agencies. Complex accommodation rules are supposed to be taken into account, in compliance with strict balancing conditions and very tight operational restrictions. The context of the International Space Station (ISS) has paved the way for a relevant research and development activity, providing the company with a remarkable expertise in the field. CAST (Cargo Accommodation Support Tool) is a dedicated in-house software package (funded by the European Space Agency, ESA, and achieved by Thales Alenia Space), to carry out the whole loading of the Automated Transfer Vehicle (ATV). An ad hoc version, tailored to the Columbus (ISS attached laboratory) on-board stowage issue, has been further implemented and is to be used from now on. This article surveys the overall approach followed, highlighting the advantages of the methodology put forward, both in terms of solution quality and time saving, through an overview of the outcomes obtained to date. Insights on possible extensions to further space applications, especially in the perspective of the paramount challenges of the near future, are, in addition, presented.

A Study on the Application of PIDO Technique for the Maintenance Policy Optimization Considering the Performance-Based Logistics Support System (성과기반 군수지원체계의 정비정책 최적화를 위한 PIDO 기법 적용에 관한 연구)

  • Ju, Hyun-Jun;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.632-637
    • /
    • 2014
  • In this paper the concept of the performance-based logistics (PBL) support for weapon systems is discussed and an enhancement is studied such that prior to the Operational phase, the development of the PBL can begin from the Engineering & Manufacturing Development (EMD) phase together with multiple performance indices considered. The genetic algorithm should be considered for the complex system to solve the maintenance policy optimization. In particular, the requirement of repair level analysis model is developed based on reflecting the PBL concept. To decide the maintenance policy prior to Operational phase in accordance with customer requirements, the PIDO(Process Integration and Design Optimization) technique useful in choosing the performance indices and changing the constraints was used. The genetic algorithm of PIDO tool, like PIAnO and ModelCenter, was verified that it could be applied to optimize the maintenance policy.

Track Improvement Study Guide for Speed-up Conventional Railway (간선철도 속도향상을 위한 궤도개량 연구방향)

  • Kim, Hwan-Yung;Lee, Dong-Ho;Kim, Si-Chul;Gong, Byung-Gun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2456-2463
    • /
    • 2011
  • Conventional railways are less competitive than other land transportation means in term of speed, and thus users preference and transportation share for rail system are relatively lower than others. For example, most of the conventional lines except the Seoul~Busan corridor run at an average speed of 70 km/h or less, which imposes certain constraints on roles and functions as the trunk lines. In this regard, the speed of the conventional lines should be improved up to 200 km/h to gain competitiveness, promote balanced regional development and lead the era of low carbon green growth. As track system is one of the most important elements for the speed-up, it is critical to come up with optimum technical solutions. Improvement of ballast track structure with efficient track installation can provide structural stability for higher speed and ensure operational safety with lower maintenance efforts. Thus, this study focuses on consequences followed by the speed-up including increase of load imposed on the track and impacts on track components, and provide solutions for track maintenance by analyzing impact on the track structure by speed. Also, it compares ballast and concrete tracks under designing and construction and considers how to meet needs for passengers comfort and environmental requirements as a strategic approach.

  • PDF

GEO-KOMPSAT-2 LAE Burn Plan in Supersynchronous Transfer Orbit (정지궤도복합위성의 SSTO 액체원지점엔진 점화계획)

  • Park, Bong-Kyu;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • GEO-KOMPSAT-2 which is under development by KARI to be launched in 2018 is expected to be injected into its orbit through the standard GTO(Geostationary Transfer Orbit) or SSTO(Supersynchronous Transfer Orbit). While the standard GTO mission has been applied for the most of the geostationary satellites, the SSTO mission is rare case and significantly different from the standard GTO mission in technical point of view. This paper lists the operational constraints to be applied for GEO-KOMPSAT-2 SSTO mission, and introduces a preliminary LAE burn plan for GEO-KOMPSAT-2 mission. In order to evaluate the developed plan, a simulation study has been performed considering ground station visibility.

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications

  • Madzvamuse, Alfred;Hamenu, Louis;Mohammed, Latifatu;Bon, Chris Yeajoon;Kim, Sang Jun;Park, Jeong Ho;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.

Design Optimization of Double-deck Train Carbody Under Multi-loading Condition (다중하중조건에서 2층열차 차체의 최적설계)

  • Lee, Tae-Hee;Lee, Jin-Min;Jung, Jae-Jun;Hwang, Won-Ju;Kim, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1472-1478
    • /
    • 2006
  • Double-deck train has been attracted growing attention as next generation transportation around metropolis because of high passenger carrying capacity. To develop high-speed double-deck train with low operational costs, the carbody must be designed as light as possible. In addition, the carbody must be strong enough to ensure the safety of passengers. To meet these design requirements, we perform systematically weight minimization that determines thickness of aluminum extruded panels of the carbody. First, to reduce the design variables, we carry out the screening process that select sensitive or/and important design variables through design exploration. Then, weight minimization is accomplished under multi-loading condition such as vertical, compressive and torsional loads, while satisfying strength constraints of the design regulations. Finally, the result of design optimization is discussed by comparison with its initial design.

Nuclear Core Design for a Marine Small Power Reactor (선박용 소형동력로의 노심 핵설계)

  • 최유선;김종채;김명현
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.146-152
    • /
    • 1996
  • A small power reactor core of 108 MW$\_$th/ was designed with some design constraints: 2 year refueling cycle length, soluble boron free operation, low power density, and proven fuel assembly design - Uljin 3'||'&'||'4 design specifications. CASMO-3 and KINS-3 was used to evaluate operational capability for power level control via control rods. Cycle length, power peaking factor, M.T.C., and power coefficients were also checked. Designed core loaded with KOFAs satisfied all design goals. We found that much more burnable poisons are to be loaded with axial enrichment zoning. Control rod assemblies should be located at every other assemblies with more than 3 banks. Additional shutdown banks are proposed for the safe plant cooldown, which could be located at core periphery.

  • PDF

Visualization of Asthmatic Distribution Patterns in accordance with Administrative Dong Using GIS: a Case Study of Daegu (GIS를 활용한 행정동별 천식환자 분포특성의 시각화: 대구시의 사례 연구)

  • Shin, Ki-Dong;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.3
    • /
    • pp.179-191
    • /
    • 2006
  • The authors argue that the current Government Information System for asthmatics appears to be non-user friendly due to lack of the cartographic representation for the text based statistical data. Acknowledging these constraints, an operational, user-friendly map for asthmatic prevalence has been generated by combining existing statistical data with the administrative Dong boundary map under GIS environment. The Geographical User Interface, in particular, were ideally suited to deriving the major distribution patterns that more asthmatic prevalence tends to be occurred on conventional commercial district and industrial complex. A visual map using spatial modelling technology were generated to show the fact that some degree of increasing or decreasing trends of asthmatic prevalence already exists in the experimental sites. It could be used as an evidence to restrict initiation of development activities causing negative influence to asthma such as road construction. The result of this study would play a crucial role in improving the quality of environmental health information service if it is operationally introduced into the Government since the highly user-friendly interface provides a completely new means for disseminating information for asthmatics in a visual and interactive manner to the general public.

Local-Generator-Based Virtual Power Plant Operation Algorithm Considering Operation Time

  • Park, Sung-Won;Park, Yong-Gi;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2127-2137
    • /
    • 2017
  • A virtual power plant (VPP) is a system that virtually integrates power resources based on the VPP participating customer (VPC) unit and operates as a power plant. When VPP operators manage resources to maximize their benefits, load reduction instructions may focus on more responsive VPCs, or those producing high profitability, by using VPC resources with high operation efficiency. VPCs may thus encounter imbalance problems during operation. This imbalance in operation time would bring more participation for some VPCs, causing potential degradation of their resources. Such an operation strategy would be not preferable for VPP operators in managing the relationship with VPCs. This issue impedes both continual VPC participation and economical and reliable VPP operation in the long term. An operation algorithm is therefore proposed that considers the operation time of VPC generators for mandatory reduction of power resource consumption. The algorithm is based on constraints of daily and annual operation times when VPP operators of local generators perform capacity-market power transactions. The algorithm maximizes the operator benefit through VPP operations. The algorithm implements a penalty parameter for imbalances in operation times spent by VPC generators in fulfilling their obligations. An evaluation was conducted on VPP operational effects by applying the algorithm to the Korean power market.