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Design and Specification of a Low-Level Control
Software for an FMC Using supervisory Control Theory
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Abstract

Supervisory control is an approach based on formal language. It is used to model and control
discrete event systems in which each discrete event process is represented as an automaton. A
supervisor is a generator that switches control patierns in such a way that a given discrete event
process behaves in obedience to various constraints. A flexible manufacturing cell (FMC) is one of
discrete event systems. Functions necessary for the operation of an FMC are characterized by op-
erational components and informational compomen:s. The operational components can be modeled
using the finite state machines and the informational components can be modeled using the ab-
stract formalism which describes supporting operations of the cell controller.

In this paper, we addressed functions required fir FMC control specification, software engineer-
ing aspects on FMC control based on supervisory control, a concept of event queue for resolving
synchronization problem, and complexity reduction. Based on the mathematical model of an FMC,
we synthesized the controller by integrating a supervisor for FMC with control specification that
specifies event-driven operation of the cell controller. The proposed control scheme is stable math-
ematically so that the system always behaves on & controlled way even under the existence of un-
controllable events. Furthermore, using an event jueue concept, we can solve a synchronization
problem caused by the violation of instantaneity assumption of supervisory control theory in real
life situation. And also, we can propotype a conircl software rapidly due to the modularity of the

proposed control scheme.
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1. Introduction

A flexible manufacturing system(FMS) is dofined as an integrated manufacturing system
composed of several flexible numerically controlled(NC) machines and automated material hand-
ling systems such as automated guided veaicles(AGV) and automatic storage/retrieval
systems(AS/RS) under computer control. In gemeral, the flexibility of FMSs can lead to the
benefits such as increased productivity, reduced inventory, reduced production cost and quality
improvement. But these virtues come to reality only through the fullest exploitation of the po-
tential flexibility residing in FMS. Here cornes the importance of the computer control
systems. Control aspects of FMS can be subdivided into two parts : one for system operation
optimization and the other for control softwars generation. While there are numerous litera-
ture concerning operation optimization, relati-ely few research efforts exist in relation to
software development process. Representative research efforts aiming to tackle such software
engineering aspect of the control are the conceptual framework proposed by Naylor et al. [13],
object -oriented representation of a cell controlle: for rapid prototyping of control software [10]
and the automatic generation of control software based on the formal model of the system
[12]. In those researches, manufacturing systems are modeled using formal specification method
such as object hierarchy or state transition diagrams to ease the implementation and mainten-
ance of the control software.

In our research we intend to tackle the probiem of designing and specifying control software
for FMC. In what follows we consider the FM(' control problem as an event dispatching prob-
lem based on the state transition model of a cell coupled with a cell supervisor. To be rigor-
ous with the proposed control scheme, the cell should be represented with sufficient formality
in the sense that such concepts as synchronization and mutual exclusion are formally treated.
We selected the finite state automata as the prime modeling tool because of its simplicity and
comprehensiveness. Moreover there exist well Jdeveloped theories on supervisor synthesis for
such systems [16-19].

Today the main trend in structuring automsted manufacturing systems is to expand gradu-
ally from an FMC level to a fulifledged FMS level [1]. This was made possible due to the
advancement of the computer communication technology and standardization efforts by the in-
dustry. In particular, for small to medium entcrprises pursuing CIM, this gradual build up is
the most suitable approach from both economic:l and technological points of view.

This research is motivated by the expectaticn that the gradualism would persist : i. e. we

first concentrate on rapid design of a control :oftware for a single cell and then implement it
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to other cells with a minimum effort as new cells are added. Assuming that the behavior of
the target FMC is deterministic, our research objectives can be summarized as follows : 1)
Formal representation of the FMC and its contrc. requirements using a finite automata model,
2) Synthesis of a supervisor satisfying control requirements and guaranteeing some control
invariance(e. g. deadlock free), and 3) Proposing a control software architecture based on the
concept of cell supervisor for realtime event dispatching in FMC.

In the following section 2, background of this research is outlined. In section 3, the super-
visory control approach to developing control sofiware for FMC is given. A software architec-
ture for the proposed control scheme is present:d in section 4-1 and an example problem is
illustrated in section 4-5. And the concluding remarks and directions for further researches are

given in section .

2. Background of the research

2-1. Relevant previous researches

Kim {7,8] claims that automata-theoretic models be the most appropriate models for the
mathematical representation of automated manufacturing systems due to the state transition
property of such systems. Mettala et al. [12] proposed a CASE tool, CIMGEN, for automatic
generation of control software which uses the concept of system state space graph.

One important variant of the automata-based rnodels is a Petri-net model. Its language com-
plexity as well as algebraic complexity is highe: than that of finite state machines [5]. The
lack of satisfactory verification method for data structures and liveness, and the difficulty of
analyzing reachability graphs in the case of infinite states, however, limit the applicability of
Petri-net models [15].

In the meantime, control community developed systematic theories for the control of discrete
event systems such as manufacturing systems, -ommunication systems and database systems,
by characterizing the asynchronous, nondeterministic and discrete natures of such systems.
Main objective of the theories in control commuaity is to determine the qualitative structural
features of the control problems in the discrete event systems [16]. Informally, these research
directions are called supervisory control. The narae, " supervisor”, comes from the name of the
automaton that provides an appropriate controi pattern according to the state transition of

the target system. One of such theories under the framework of Ramadge and Wonham [16]
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constitutes the theoretical background of this research.

Maimon and Tadmor [11] applied supervisory control to low-level control of FMS. They
represented control requirements using forbidder string and temporal logic, and converted them
to automata, thus enlarging the expressive power of their model. And then, they reduced the
system model and the supervisor at each step cf the controller synthesis to overcome the com-
plexity problem. Unfortunately Maimon et al’: research lacks many extensions to the basic
framework of Ramadge et al. For example, mcdular synthesis [19], decentralized control [9],
partial-information .system control [3], realtime control using temporal logic [14] and
real-time control using clock-automaton [2] car provide a wealth of modeling tools and con-
troller design methods for manufacturing engirzers. Our research includes a control software

framework based on a supervisor and its implerentation-related issues.
2-2. Supervisory control theory

In this section, the main theme of the superisory control scheme presented by Ramadge et
al. [16] will be described.

Supervisory control is one of the approaches .0 model and control discrete event systems. It
is based on a formal language theory. The thecry is elegant and is independent of the models
used for applications. In most applications, each discrete event process is assumed to be
modeled by an automaton or a state machine, and its behavior is also assumed to be com-
pletely described by the language generated b the automaton. All system requirements or
specifications are also assumed to be specified as languages. Therefore, a design problem for
supervisory controllers of discrete event systems can be stated as follows : find an automaton
which is a supervisory controller such that the combined automaton for the controlled system
generates the specified language. A supervisory controller controls a discrete event system by
enabling or disabling controllable events. Mary interesting results have been reported on
controllability, observability and modular synthe+is [20].

In their original paper, the automaton descriting each discrete event process is called a gen-
erator and a generator that accepts external ccntrol is called a controlled discrete event pro-
cess(CDEP). A supervisor is defined as a gene-ator that switches control patterns in such a
way that a given CDEP behaves in obedience to various constraints. When a CDEP and a
supervisor are coupled together, the system s called a supervised discrete event process
(SDEP) and the language generated by the SDIP represents the possible behavior of the con-
trolled system. Therefore, the objective of the -upervisory control problem is the synthesis of

a supervisor that, when coupled with a CDEl, generates a desirable language. In fact, this
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synthesis is accomplished through the search of supremal controllable sublanguage of the SDEP
[16].

3. Specification of the FMC control software

In this research, we intend to construct an FMC control software based on formal state
transition model of a plant. For this intention, we analyzed the functional requirements of the
FMC control. We identified, from these requirements, suitable functions for modeling using
state transition net. The other functions are integrated into the control software around the
state transition model. We will apply the techniques of Ramadge and Wonham when we ex-

tract the state transition model of the cell contruiler from the system state transition model.
3. 1 Functional requirements of the FMC control

A manufacturing cell concept was first introduced in Norway [1]. Under this concept, the
manufacturing cell is composed of several CNC machines arranged in a circle around a single
robot. Today, the definition of FMC varies widely among industries and companies. For
example, the machining cell of ASRI(Automation and Systems Research Institute) FMS located
at SNU(Seoul National University) in Korea consists of one CNC-athe and one
CNC-machining center connected via one AGV. But, viewing in terms of machine tools connec-
tivity through automatic carriers, conveyors, or robots without AGVs, there are many FMCs
in literature with a tightly coupled configuration as well.

In general, functions necessary for the operation of an FMC can be categorized into three
sub-functions. First, the cell operation comtrol fumction monitors and regulates the various
kinds of discrete events occurring in the cell to accomplish the design objectives of the cell.
This can be thought of as the “physical” part of the cell controller. But, for these operational
control to be exercised properly, necessary infcrmational support should be provided, which
constitutes the “informational” part of the cell controller. This is the second function. More-
over, modern automated manufacturing control systems should be equipped with a facility for
communicating with other parts of the system. "his is the third function of the FMC control-
ler. We classified three sub-functions into two ieparate modeling components of the cell con-
troller : the first(operation control) function as an “operatiomal” control component of the cell

control model, and the second and the third(data management and communication control)
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functions as an “informational” component of the cell control model. We will describe the op-
erational part of the model using the finite siate machine and the informational part of the
model using the abstract formalism which spec.fies supporting operations of the cell controller

according to the behavior of the operational jart. Our modeling scheme is illustrated in the

Figure 1.

Communication to
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Remote Database
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Local Database Remote Database
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Figurel. Modeling Scheme for FMC Controller
Detailed description of the modeling scheme follows in the next sections.
3-2. Formal specification of an FMC control software

In this section, we develop a formal specificaiion method for the cell control software.

In general, software design problem entails structured analysis and design of systems
requirements. Various documents are produced such as data flow diagrams, entity-relationship
diagrams, etc. by structured analysis and desizn. Those diagrams can be classified into data
model, functional model, or dynamic mode. according to their characteristics. Under
object-oriented paradigm the above models are presented in the form of an object model. An
object model describes objects and their relationships which constitute the target software sys-
tem. Several design methodologies exist which represent different set of names, symbols,
diagrams and procedures for producing the models mentioned above. Each methodology has
their own methods for identifying data objects, relationships, and procedures of the models.
Our design scheme is primarily targeted at deiining the operational model of the cell control

software which is ready for being translated to & programming language and has a rapid
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prototyping property. To reach this goal, we concentrated on the dynamic model of the cell
and defined the data structures and procedures of the system object model based on data
and communication requests of the dynamic model. If these object models are implemented in
the form of a library of reusable component moduies, we can prototype the cell controllers rap-
idly. This will be explained further in the last s:ction. Our scheme can be viewed as another
method in terms of the above statements. Becausz we are able to build the dynamic model of
a target system to describe the discrete operaticns of the system. And then, we can identify
the entities and procedures for defining the object model of the manufacturing system using
this dynamic model.

In general, the data generated, updated and maintained in the cell are related to some
events occurring in the cell. For example, status «f each cell component, production information
and resource status should vary according to the occurrences of some appropriate events. Simi-
larly, communications between the cell computer .hd the low-level equipments or the high-level
host are initiated via occurrences of some event:. For example, alarms for the occurrences of
machine failure or part program upload/downloac are initiated by the occurrences of machine
failure or part input events, respectively. We elabirate on this relationship between operational
events and the corresponding data manageme;t/communication tasks for specifying the

requirements of the control software for an FMC.

Dynamic Model
of the FMC ({G)

@ Procedure
{ Request (f)
i

update
request

"4

Celi Control Software

Figure 2. Conceptual View ot a Cell Control Software
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A cell control software can be viewed as : program which performs various managerial
operations on the system variables in the occurrences of system events(Figure 2). We can de-

fine this relationship in a 5-tuple :

CS = (G, V, V., P, f)

where CS is a control specification, G is a Mazaly machine that has an identity output func-
tion (Mealy machine is a finite automaton tha. associates an output symbol with each state
transition [4].), V is a set of system varianles, Vi is the initial values of the system
variables in V, P is a set of procedures expressed in terms of the variables in V and f is a
set function(f:E(G)—~P) defined as f(s)={p& Pl;. performs the functions required by the occur-
rence of the event 6€E(G), where E(G) is the set of event symbols occurring in G}. In terms
of our previous explanation G will represent he dynamic model of operations of the con-
trolled cell, where “controlled cell” means the ciupled system of a cell supervisor and physical
cell components. Originally, we were interested in the way cell supervisor (G) is constructed.
Cell supervisor is an agent which monitors “he discrete events occurring in the cell and
operates appropriate control actions into the c¢:ll. It is modeled as a finite state automaton
synthesized from the finite state machine mod¢l of the cell and control constraints. The cell
model is constructed from finite state machin: models of the cell components through the
shuffling operation of automata theory [4]. 3ut the cell model in itself causes unwanted
behavior of the cell components. We impose ccntrol constraints on the cell model to resolve
this phenomena. Currently the control constrain:s regarding deadlock prevention, buffer over-
flow/underflow prevention and obedience to a .riven process plan are implemented. After con-
straining the behavior of the cell model, we obtain the so called supervisor which, when
coupled with the cell model, guarantees desir. ble operations of the cell by regulating the
occurrences of system events. Detailed synthesiz ng process is described in [16]. So we can ob-
tain the dynamic model of the controlled cell, (, through a mathematically proven way. G will
determine the trajectory of the system behavio* by regulating the occurrences of events. The
other components of the CS (V, Vi, P, f) are r lated to the description of data and communi-
cation requests of the cell control function. V is a set of variables which can be a column
name of database table, important global variales, communication ports, etc. Thus V can be
referred to as a data dictionary for describing nformational part of the cell controller. Initial
values of the variables are defined in a separat: set V.. Using these system variables we can
express the procedures required to handle the ciata management or communication requests. P

is a set of such procedures required to embody the controller, and each procedure in P carries
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out some operation such as inserting a data reccrd into database table, setting a register to a
specified value, initiating machine operation, or :nvoking a packet analyzer. Thus by ~<xecuting
certain procedures in a specific order we can achieve required handling function for each event
occurring in the cell. The mapping f is a procecure request for each event occurred as shown
in Figure 2.

Therefore, if all the components of the CS stricture are specified completely, we have a for-
mal specification model of the cell control software. This is due to the fact that CS can be
interpreted as a program that executes a set of operations upon system variables according to
the occurrences of events which is guided by & cell supervisor (G), and by generalizing the
system variable concept the communication needs of the controller can also be handled in ad-
dition to the data management tasks. This structure will ease implementation process of the
cell control software. Moreover, by incorporatiny the framework of supervisory control theory
into our scheme, we can guarantee control irvariance in the sense of the Ramadge and
Wonham [16].

In the next section we will present our contra! software architecture. Then we will give an

automaton model of an example FMC for showins the supervisor synthesis process.

4. Software engineering aspects on the proposed FMC
control specification

In this section, we propose our control software architecture and building steps based on the
cell supervisor synthesized through the procedur. described i the previous section(detailed pro-
cedure will be illustrated in an example to ' shown later in this section). Then event
synchronization and complexity reduction probleins are resolved within the context of software

implementation. A simple example closes the section.
4-1. FMC control software architecture

Figure 3 shows the architecture of the propised cell controller. Our controller consists of
four modules{Event Monitor, Cell Supervisor, Ewvent Dispatcher, Data and Communication
Manager) and local database not shown in the Zgure. The four modules work together to im-
plement the semantic operations of the CS as lescribed in the previous section. First, Event

Monitor receives several types of events{s) ociurred from the FMC. The sequence of events
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are determined by the operations of the Cell Jupervisor and Event Dispatcher. When a new
event occurrence is detected, the mapping f of CS is invoked to perform necessary operations
(e. g. database transactions, communications w th other devices) using handlers in Data and
Communication Manager. After those operations are performed, the Supervisor receives the
event names (w) to tramsit to the new state. "hese event names(w) are not always the same
as the event name just detected (). This it due to the synchronization problem between
actual occurrences of events and the logical processing of the events in the controller, which is
treated in section 4-3. Supervisor now produce. a new control pattern(g) corresponding to a
new state. This pattern specifies allowable events to occur next time. Event Dispatcher
schedules the next event (¢') to occur. No ma:ter what selection rules are used, from a ran-
dom rule to a simulation-based rule, the syste:n operations are not influenced. Uncontrollable
events such as machine breakdown are not considered since they are not forced to occur but
only detected from the FMC. Event Dispatche then executes appropriate commands lying in
Data and Communication Manager to enable th .t event. When this event (¢’) is completed, it
is detected by sensors and fed into the Event vlonitor to signal the beginning of a new cycle.
As explained later, we need to reconstruct the Supervisor while the cell is operating. Modules
for reconstructing supervisors are also stored within the Data and Communication Manager
and initiated by the occurrence of a new part input event. This new supervisor just replaces

the old one and all others remain intact.

() Event Name Cell Supervisor
Event Monitor > (G)
Procedure Request &
I i
B A
(® ’
System Commands Data _& ]
Event to FMC (@) | Communication
Manager (P)
( N\ =
Fixible Procedure Request
Manufacturin (@'<d) ®)
g f Control| Pattern:
Cell ‘ E rent
Hardwares L |
) ‘ Dispatcher

Figure 3. The Architecture of the Control Software
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4-2. Steps to designing FMC control software

Careful examination of the controller architectire presented in the previous section reveals
that it is a software duplication of CS discussed in section 3-2. From this fact, CS can be
viewed as an intermediary between the formal mcdel of FMC and the software realization of a
controller. Indeed, CS specifies the operation of .. controller in response to the occurrences of
system events.

We can characterize the controller building procasses by three stages as follows.

(i) Model Building

An automata corresponding to cell components are defined and then aggregated cell model
and supervisor are constructed from that automata.

(ii) CS Definition

Based on the events identified during the model building process, components of CS(V, Vi,
P, f) can be defined by system experts. For each event, related system variables(including DB
table fields, global variables, etc.) and required cperations(DB transaction, communication, op-
erator alarm, etc.) are specified. This is a kind «f software specification and makes it easy to
develop the final software.

(iii) Construction of Data and Communication Manager, Event Monitor, and Event Dis-
patcher

Data and Communication Manager is a library of software modules corresponding to the
procedures in P of CS. Event Monitor is a moJdule that monitors the occurrences of events
and calls the modules in Data and Communicaticn Manager by applying the mapping f of CS
to the detected event. Finally, we need Event Dispatcher to select the next event.

By the discrete nature of FMC, event-driven cimtrol is appropriate for it and our automata
and CS structure helps to implement event-driver programs. By following the proposed scheme,
we can expect several benefits in relation to softvare implementation as follows:

(1) Modular Structure of Controller

Software component such as Event Dispatcher and Event Monitor can be replaced by any
module irrespective of the internal logic if the riwodule has the same interface as the original
one. Handlers in Data and Communication Manazer can also be updated, appended or deleted
as modification is necessary, with small impact o1. other components.

(i1) Rapid Implementation of Controller

Our procedure is additive: 1. e, as we proceed with the procedure, software requirements are
added to the basic cell model of the system. So several logical problems related to system

behavior are resolved in the earlier stages of ou procedure. In cases where the model is not
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suitable, model reconstruction is performed eas ly because only the problematic component is
required to be changed. After then, it is integrated with other components mechanically. These

overall properties shorten the period for control software development.
4-3. Event synchronization

One of the assumptions of the supervisory control theory is that events occur instan-
taneously. Therefore. the discussion in section 4-1 describes the operation of the controller
exactly if the occurrences of events are instantaneous. In real situations, however, some events
are mechanical movement of physical objects aid this consumes time in order of magnitude
from a few seconds to several minutes. Thus th: trajectories of multiple events could be inter-
woven; for example, even if the part loading cmmand (s') to machine B was issued earlier,
the completion event (¢) of machining at macline A may occur while part loading operation
onto machine B is still doing. This can cause 1in inconsistent transition of the supervisor in
the sense that the supervisor is fed with an ev:ont oo’ sequenc o’ are not allowed under the
current state.

Thus some synchronization mechanism is nee¢ded to handle time consuming events consist-
ently with the supervisor(which was synthesizel without timing consideration). We adopt an
event queue to manage this problem. This queu: contains event names corresponding to either
the events enabled by Event Dispatcher or the uncontrollable events detected from the FMC.
Basically events in this queue are processed usii g FIFO (First-In-First-Out) rule.

The procedure for event queue management is listed below:

(i) Wait for an event signal. If a signal arrives, go to (ii).

(ii) If the signal is issued by Event Dispatiher indicating the start of some event, add it

to the event queue and go to (i).

If the signal is indicating the occurrenc:: of an uncontrollable event detected from the
plant, add it to the event queue. If this is the only event in queue go to (iii): other-
wise go to (i).

If the signal is indicating the end of an esvent issued by Event Dispatcher, go to (iii).

(iii) Search the event queue to find an event name corresponding to the received signal.

If it is the first event of the queue, process the events in queue sequentially until an
event issued by the Event Dispatcher bit not finished yet is encountered or the event
queue is empty. Event processing means o°xecuting routines in Data and Communication
Manager and transiting Cell Supervisor. If the found event is not the first event in

the queue, set the event as finished and 30 to (i).
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By managing the event queue as above, we can guarantee synchronization of event
occurrences and supervisor transition behavior. This is crucial to the generation of appropriate

control patterns reflecting correct status of the cill.
4-4. Complexity reduction

In general, state machine approach is not accepted as a good modeling tool to discrete event
system because of the state explosion problem fcr complex systems [20]. We also found, while
solving example problems, that our current aiproach has some complexity problems. For
example, while we were synthesizing a cell superv:sor it was necessary to construct an automa-
ton that describes the possible flow patterns of multiple parts existing concurrently in a cell.
In this case, if we denote the number of part types by n, the maximum allowable number of
parts in the cell by m and the minimum numb r of operations for the parts by p, then the
number of states of the required automaton wll be O(mnp). This causes severe complexity
problem in the supervisor synthesis process. In his section we propose a scheme to overcome
this complexity problem in part.

The key idea to our scheme is very clear and straightforward: we reconstruct small
supervisors repeatedly. The idea follows from he fact that parts not within the cell are
excluded from the control envelope. Thus we fi'st construct a supervisor incorporating only
those parts residing in the cell. When a new pa-t enters the cell, we synthesize a new super-
visor incorporating that part, the parts that hzve left the cell are, of course, discarded from
the supervisor synthesis process.

A formal procedure for implementing that sche:ne is:

(1) Make a transition corresponding to part nput for each component automaton.

(ii) Assuming the current state as the initia! state, take trim components of automatall6]

for parts in the cell.

(iii) Make an automaton for the newly input nart.

(iv) Make an automaton for part flow patter: by shuffling the automata generated in (i)

and (iii)
( v) Synthesize a supervisor using the cell au'omaton which already exists and the automa-
ton made in (iv).

As is apparent from the procedure, we need o maintain component automata as well as a

supervisor. But these storage burden is outweirhed by the reduction in computational com- )

plexity.



172 Sangkyun Kim - Jonghun Park - Namkyu Park - Jin Woo Park R ET S aE

4-5, Example ¢ Operational contrcl of a machining FMC at ASRI

We confined our control scheme to satisfy the requirements of

(i) deadlock prevention,

(ii) buffer overflow/underflow prevention and

(iii) obedience to process plan.

While buffer capacity management and obedieice to process plan is basically required, dead-
lock prevention is not essential. There are two different approaches to deadlock prevention :
one is a deadlock detection and resolution, te other is a deadlock avoidance. We simply
adopted the deadlock avoidance approach for illustrating our approach in the following example.

The ASRI FMS is a model plant constructed within the ASRI(Automation and Systems Re-
search Institute) located within Seoul National University, Seoul, Korea. ASRI FMS consists
of 4 flexible manufacturing cells with one loading/unloading station; flexible machining cell,
flexible assembly cell, material handling cell coriposed of 1 AGV and AS/RS in 16X5 racks,
and a vision cell. We apply the proposed controller design scheme to one of these cells; flex-
ible machining cell in Figure 4. It is compssed of one turning center consisting of a
CNC-athe with a material handling robot trinsferring parts between CNC-lathe and I/0
buffer, and one machining center composed of 2ne horizontal type machining center with an

APC(Automatic Pallet Changer).

( Tuming Center ) ( Machining Center )
NC Robot Horizontai Type
Machinin
Lathe .0. Center 9 first byffer
Buffer Apg 59 nd buffer

Cell Control Computer

Figure 4. ASRI Machining FMC

First, we modeled each component of the maciining cell as a finite state automaton. Figure

5 shows an automaton for the machining cente . Meanings of each symbol are also shown in
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the figure. Similarly Figure 6 shows an automaton for the APC. APC can be regarded as a
rotating buffer of capacity 2. If we impose the constraint that requires the machining center
to be in a non-working state when parts are nct prepared, we can obtain a legal behavior of
the machining center as shown in Table 1{ The states in Table 1 are formed by the Cartesian
product of the sets of states of each automaton ). A legal behavior is physically possible and
does not violate given control constraints. In t uns case, we did not take a process plan into
consideration as explained below. This table cin be obtained by intersecting the language
generated by the automaton for machining cente and the language by the automaton for APC
[4]. The effect of this process is to manage »suffer capacity since the automaton for APC
prevents events from occurring which cause buffer overflow/underflow, the automaton
generated by the intersection operation also has the same property. In the table each cell (i,
j) of the matrix, corresponding to the ith rcw and j-th column of the matrix, represents
state transition of an automaton from the stat: i to the state j. The content of the cell is
the event which causes the transition. Howev:r, the automaton allows yet an undesirable
behavior. For example, the automaton in table 1 cannot guarantee input parts will follow suit-
able routing sequences within the cell. This guiilance of part flow is given by a process plan
automaton. In this example, for simplicity, we (xcluded a process plan consideration from the
model which describes the possible part flow pa tern within the cell. But, it is a simple mat-
ter to adjoin process plans to the current mode’. All the work required for adjoining are just
a “shuffling operation”. An example which includes a process plan constraint can be found in
[6]. The last step of our approach is to find « supremal controllable sublanguage of the sys-
tem by applying the algorithm of Wonham et zIi. [18]. This supremal controllable sublanguage
(Table 1) guarantees that the legality will be preserved in spite of the existence of uncontrol-
lable events. As mentioned in earlier section 2-2. this supremal controllable sublanguage defines
a supervisor. In this case, the supremal controilable sublanguage generated by the automaton
in Table 1 is just the language generated by the automaton in Table 1 because the language
is controllable in itself. More abstract and recuced supervisor can be constructed from the

generated supervisor using the method in [17].
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state

0 : idle

1 : working
2 : waiting
3 : down

event

11 ; part input

12 : processing completion
13 : part output

14 : machine breakdown
16 : machine repair

14
(u)

Figure 5. Automaton of ASRI FMS machining center
( (u) represents uncontrollable event )

state
6 0 : empty
(J—X1) 1: first buffer ful
2 : second buffer full
8 3 3 : both buffer full
event
(G Xz ) 16 : patlt input from AGY
16 17 : paliet output to AGV
18 : buffer rotation

Figure 6. Automaton of ASRI 1'MS machining center buffer

Table 1. Legal behavior of machinins center(without process plan)
(= Supremal controllable suiblanguage for machining center)

0 1 2 3 4 S 6 78 9 10 (11 | 1213 | 14115
0 16
1
2
3 15 16
4 17 138
= ;
[ i
7 17 | 15 18
8 18 11 16
9 12 | 14 16
10 13 16
11 18 | 15 16
12 17 11
13 17 12 | 14
14 17 13
15 17 | 15
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If we continue in this way, we can also obtain the supremal controllable sublanguage for the
turning center(Table 2).

Currently the turning center and machining center of ASRI FMS does not have any interac-
tion. So the supervisor for the total machining center can be constructed from the component
supervisors for each workstation. This is a kind «f decentralized control [9]. All the results of
this section were generated using the software modules implemented in C programming

language based on the above algorithms.

Table 2. Supremal controllable sutlanguage for turning center

0 1 2 3 4 5 6 7 8 9 (1011|1213 |14 |15

0 7

1

2

3 6 7 9

4 8 0,1 9

5 2 5 9

6 34 9

7 8 6 9
8 10 0,1 7

9 2 5 7

10 34 7

11 10 6 7
12 10 8 0,1

13 10 8 2 5
14 10 8 34

15 10 8 6

5. Conclusion

A new architecture for FMC control software wis proposed in this research. The purposes of
this research are three-folded. First, the proposed controller should reflect the discrete nature

of cell operation. Secondly, it should be stable mathematically; i. e, the controller should be
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synthesized based on the mathematical model ¢? the target system and should assure a kind
of control invariance under the existence of so.ne uncontrollable events. These two objectives
were resolved by the utilization of the super:isory control theory under the framework of
Ramadge and Wonham. Lastly, the proposed control scheme should be easily transformed to
software. To meet this requirement, we introdiiced the CS structure that aims to assist in
specifying event-driven operation of a cell coniroller. By integrating supervisor with CS, we
could obtain a specification of control software or an FMC. As a result, we can prototype an
event-driven control .software rapidly.

In adoptiing the supervisory control scheme, w: are faced with complexity problem. As a par-
tial solution to the complexity problem encount(red in the supervisor synthesis process, we de-
veloped an adaptive supervisor concept in whick cell supervisors are reconstructed according to
variations of the system status. By using this scheme, we can reduce much computational
cost. In addition to the complexity problem, here is also a synchronization problem when
using the supervisory control theory. This could be attributed to the instantaneity assumption
of the theory. We resolved this problem by in roducing the notion of event queue. An event
queue processes events in a manner consistent with the transition property of supervisor. By
utilizing all these concepts, we proposed a contioller architecture that can be constructed in a
modular fashion.

Since that we are confronted the problem «f expanding our control scheme to FMS (at
ASRI) level where the time bound of an event is longer than that of FMC level, our future
research will go toward concentrating on the cevelopment of a real-time controller based on
the temporal logic to manage the timing probler

Another possible area for expanding our cur ent research is applying object-oriented para-
digm (OOP) in the modeling and implementation of the proposed control scheme. Application

of OOP is expected to be very promising becausz our controller has the modular structure.
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