Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.4.314

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications  

Madzvamuse, Alfred (Department of Chemical and Biological Engineering, Hanbat National University)
Hamenu, Louis (Department of Chemical and Biological Engineering, Hanbat National University)
Mohammed, Latifatu (Department of Chemical and Biological Engineering, Hanbat National University)
Bon, Chris Yeajoon (Department of Chemical and Biological Engineering, Hanbat National University)
Kim, Sang Jun (Department of Chemical and Biological Engineering, Hanbat National University)
Park, Jeong Ho (Department of Chemical and Biological Engineering, Hanbat National University)
Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.4, 2017 , pp. 314-322 More about this Journal
Abstract
The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.
Keywords
Elevated temperature; Lithium bis(oxalate)borate; Supercapacitor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. Masarapu, H.F. Zeng, K.H. Hung, B. Wei, ACS Nano, 2009, 3(8), 2199-2206.   DOI
2 X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, Chem. Soc. Rev, 2016, 45(21), 5848-5887.   DOI
3 X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Energy Environ. Sci, 2014, 7(7), 2160-2181.   DOI
4 K. Xu, Chem. Rev, 2004, 104(10), 4303-4418.   DOI
5 K. Xu, Chem. Rev, 2014, 114(23), 11503-11618.   DOI
6 J.B. Goodenough, Y. Kim, Chem. Mater, 2010, 22(3), 587-603.   DOI
7 B.W. Ricketts, C. Ton-That, J. Power Sources, 2000, 89(1), 64-69.   DOI
8 H. Andreas, J. Electrochem. Soc, 2015, 162(5), A5047-A5053.   DOI
9 J. W. Kim, S.H. Choi, J.S. Kim, J. Korean Electrochem. Soc., 2017, 20(2) 34-40.   DOI
10 E.P. Roth, C.J. Orendorff, Interface, 2012, 21(2), 45-49.
11 M. Marcinek, et al, Solid State Ionics, 2015, 276, 107-126.   DOI
12 G. Xiong, A. Kundu, T. S. Fisher, Thermal effects in supercapacitors, 2015, Springer International Publishing.
13 C. Zhong, Y. Deng, W. Hu, D. Sun, X. Han, J. Qiao, J. Zhang, Electrolytes for electrochemical supercapacitors, 2016, CRC Press.
14 J. Jeong, H. Lee, H. Lee, M-H. Ryou, Y. M. Lee, J. Korean Electrochem. Soc., 2015, 18(2), 58-67.   DOI
15 W. Xu, C.A. Angell, Electrochem. Solid-State Lett., 2001, 4(1), E1-E4.   DOI
16 E. Frackowiak, Q. Abbas, F. Beguin, J. Energy Chem., 2013, 22(2), 226-240.   DOI
17 K. Xu, S. Zhang, T.R. Jow, W. Xu, C.A. Angell, Electrochem. Solid-State Lett., 2002, 5(1), A26-A29.   DOI
18 K. Xu, S.S. Zhang, U. Lee, J.L. Allen, T.R. Jow, J. Power Sources., 2005, 146(1), 79-85.   DOI
19 S-K. You, S-G. Park, J. Korean Electrochem. Soc., 2017, 20(1), 13-17.   DOI
20 R. Younesi, G.M. Veith, P. Johansson, K. Edstrom, T. Vegge, Energy Environ. Sci., 2015, 8(7), 1905-1922.   DOI
21 E. Jonsson, P. Johansson, Phys. Chem., 2015, 17(5), 3697-3703.
22 F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater.,2014, 26(14), 2219-2251.   DOI
23 P. Johansson, J. Phys. Chem., 2006, 110(44), 2077-12080.
24 V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Chem. - A Eur. J., 2011, 17(51), 14326-14346.   DOI
25 J.W. Graydon, M. Panjehshahi, D.W. Kirk, J. Power Sources., 2014, 245, 822-829.   DOI
26 J.H. Won, M. Latifatu, M. Jang, H.S. Lee, B.-C.B.-C. Kim, L. Hamenu, J.H. Park, K.M. Kim, J.M. Ko, Synth. Met., 2015, 203, 31-36.   DOI
27 H. Kashani, L. Chen, Y. Ito, J. Han, A. Hirata, M. Chen, Nano Energy., 2016, 19, 391-400.   DOI
28 G. Xiong, A. Kundu, T.S. Fisher, Thermal Effects in Supercapacitors., 2015, 27-69.
29 Z. Chen, W.Q. Lu, J. Liu, K. Amine, Electrochim. Acta., 2006, 51(16), 3322-3326.   DOI