• Title/Summary/Keyword: operation target

Search Result 1,204, Processing Time 0.038 seconds

Comparison of target classification accuracy according to the aspect angle and the bistatic angle in bistatic sonar (양상태 소나에서의 자세각과 양상태각에 따른 표적 식별 정확도 비교)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Choo, Youngmin;Choi, Giyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.330-336
    • /
    • 2021
  • In bistatic sonar operation, the scattering strength of a sonar target is characterized by the probe signal frequency, the aspect angle and the bistatic angle. Therefore, the target detection and identification performance of the bistatic sonar may vary depending on how the positions of the target, sound source, and receiver are changed during sonar operation. In this study, it was evaluated which variable is advantageous to change by comparing the target identification performance between the case of changing the aspect angle and the case of changing the bistatic angle during the operation. A scenario of identifying a hollow sphere and a cylinder was assumed, and performance was compared by classifying two targets with a support vector machine and comparing their accuracy using a finite element method-based acoustic scattering simulation. As a result of comparison, using the scattering strength defined by the frequency and the bistatic angle with the aspect angle fixed showed superior average classification accuracy. It means that moving the receiver to change the bistatic angle is more effective than moving the sound source to change the aspect angle for target identification.

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

Application of C-11 Gas Target Using Finite Element Method (FEM을 이용한 C-11 기체표적의 성능평가)

  • Hur M.G.;Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1699-1704
    • /
    • 2005
  • In this research the energy degrader, which is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the Nastran mediocrity finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined, and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

  • PDF

Development of Target-Controlled Infusion system in Plasma Concentration. PART2: Design and Evaluation (혈중 목표 농도 자동 조절기(TCI) 개발 PART2: 시스템 구현 및 평가)

  • 안재목
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • Based on the 4-compartmental pharmacokinetic model developed in PART1, target-controlled infusion(TCI) pump system was designed and evaluated. The TCI system consists of digital board including microcontroller and digital signal process(DSP), analog board, motor-driven actuator, user friendly interface, power management and controller. It provides two modes according to the drugs: plasma target concentration and effect target concentration. Anaesthetist controls the depth of anaesthesia for patients by adjusting the required concentration to maintain both plasma and effect site in drug concentration. The data estimated in DSP include infusion rate, initial load dose, and rotation number of motor encoder. During TCI operation, plasma concentration. effect site concentration, awaken concentration, context-sensitive decrement time and system error information are displayed in real time. Li-ion battery guarantees above 2 hours without power line failure. For high reliability of the system, two microprocessors were used to perform independent functions for both pharmacokinetic algorithm and motor control strategy.

Input Shaping Design for Human Control System (휴먼 제어시스템의 입력형성기 설계)

  • Lee, Seok-Jae;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.54-56
    • /
    • 2006
  • To get the robust and reliable input command, we designed shaping function for target tracking system with commander's handle. Input signals of the commander's handle are generated by human operator. It is response of the human to reduce the error between target and gun. But, tracking error while operator aim a moving target manually gives poor system performance. Input noise, particularly, affects hit accuracy as the system performance. We proposed the design method of input command shaping to reduce the Input noise and to improve the operation ability and convenience. We performed the experiments with combat vehicle, example of Target Tracking System, to show the proposed method is efficient and practical.

  • PDF

The Evaluation of Performance of C-11 Radio Isotope Gas Target using Finite Element Method (FEM을 이용한 C-11 동위원소 기체표적의 성능평가)

  • Oh, Hwan-Sup;Hur, Min-Goo;Park, Sang-Pil;Jung, Hyo-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2006
  • The energy degrader is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

Optimization of Redundancy Allocation in Multi Level System under Target Availability (목표가용도를 고려한 다계층 시스템의 최적 중복 설계)

  • Chung, Il-Han
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.413-421
    • /
    • 2013
  • Purpose: System availability and life cycle cost are often used to evaluate the system performance and is influenced by the operation and maintenance characteristic. In this paper, we propose the method to improve life cycle cost and satisfy the target availability through redundancy allocation. Methods: We consider the redundancy is available at all items in multi level system. Thus, we assume that sub-assembly, module, components can be duplicated. Simulation and genetic algorithm are employed to optimize redundancy allocation. Results: Target availability is higher, the life cycle cost is increased. In addition, the items for redundancy are selected at higher level in multi level system if target availability is higher. Conclusion: We could know that target availability affects the duplication number of items and the selection of redundancy items. For further study, we will consider new optimization algorithms to compare with the proposed GA algorithm and improve optimization performance.

Implementation of Automatic Target Tracking System for Multirotor UAVs Using Velocity Command Based PID controller (속도 명령 기반 PID 제어기를 이용한 멀티로터 무인항공기의 표적 자동 추종 시스템 구현)

  • Jeong, Hyeon-Do;Ko, Seon-Jae;Choi, Byoung-Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.321-328
    • /
    • 2018
  • This paper presents an automatic target tracking flight system using a PID controller based on velocity command of a multirotor UAV. The automatic flight system includes marker based onboard target detection and an automatic velocity command generation replacing manual controller. A quad-rotor UAV is equipped with a camera and an image processing computer to detect the marker in real time and to estimate the relative distance from the target. The marker tracking system consists of PID controller and generates velocity command based on the relative distance. The generated velocity command is used as the input of the UAV's original flight controller. The operation of the proposed system was verified through actual flight tests using a marker on top of a moving vehicle and tracks it to successfully demonstrate its capability using a quad-rotor UAV.

Safety Evaluation of Elevated Guideway during Abnormal Operation on LRT of Driverless Automatic Driving System (무인자동운전 경전철시스템 고가교량의 비상운전 중 안전성평가)

  • Son Eun-Jin;Kim Min-Soo;Lim Young-Su;Lim Jong-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.29-35
    • /
    • 2006
  • Trains in LRT(Light Railway Transit) system usually have shorter car length than metro's because of their smaller passensers demand. Therefore it is very likely that the load condition of LRT system in abnormal operation, in case of which trains are in close proximity by system broke or train rescue works, could be worse rather than in normal operation, in spite of rare probability of abnormal operation. In this study, the target reliability indexes of several abnormal operations are estimated in accordance with the occurrence probabilities of each abnormal operation case and the reliability index of normal operation presented by the specification. From the indexes, load factors for the abnormal operation cases are estimated and the safety evaluation is performed for Yong-in LRT project.

A method of calculating the number of fishing operation days for fishery compensation using fishing vessel trajectory data (어선 항적데이터를 활용한 어업손실보상을 위한 조업일수 산출 방법)

  • KIM, Kwang-Il;KIM, Keun-Huyng;YOO, Sang-Lok;KIM, Seok-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.334-341
    • /
    • 2021
  • The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.