• Title/Summary/Keyword: open type geothermal system

Search Result 10, Processing Time 0.028 seconds

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Analysis of Test Operations Effect of Open-Closed Loops Complex Geothermal System Combined with Groundwater Well (지하수정호 결합 복합지열시스템의 시범운영 효과분석)

  • Song, Jae-Yong;Kim, Ki-Joon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.475-488
    • /
    • 2018
  • This study evaluates geothermal system efficiency in terms of input power and heat exchange volume on the heat-source and load sides, by applying a combined open-closed type loop system comprising a geothermal system and a groundwater well to a cultivation site. In addition, this study analyzes the effects of heating and cooling for a complex geothermal system, by evaluating the temperatures of an external site and a cultivation site during operation. During cooling operations the heat exchange volume on the heat source side, average 90.0kW/h for an open type system with an input of 235L/minute groundwater, and 40.1kW/h for a closed type system with an input of 85L/minute circulating water, for a total average heat exchange volume of 130.1kW/h. The actual heat exchange volume delivered on the load side averages 110.4kW/h. The average EER by analysis of the geothermal system's cooling efficiency is 5.63. During heating operation analysis, the heat exchange volume on the heat source side, average 60.4kW/h in an open type system with an input of 266L/minute groundwater, and 22.4kW/h in closed type system with an input of 86L/minute circulating water, for a total average heat exchange volume of 82.9kW/h. The actual heat exchange volume delivered on the load side averages 112.0kW/h in our analysis. The average COP determined by analysis of the geothermal system's heating efficiency is 3.92. Aa a result of the tradeoff between the outside temperature and the inside temperature of the production facility and comparing the facility design with a combined well and open-closed loops geothermal(CWG) system, we determine that the 30RT-volume CWG system temperature are lower by $3.4^{\circ}C$, $6.8^{\circ}C$, $10.1^{\circ}C$ and $13.4^{\circ}C$ for ouside temperature is of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$, respectively. Based on these results, a summer cooling effect of about $10^{\circ}C$ is expected relative to a facility without a CWG system as the outside temperature is generally ${\geq}30^{\circ}C$. Our results suggest that a complex geothermal system provides improvement under a variety of conditions even when heating conditions in winter are considered. Thus It is expected that the heating-cooling tradeoffs of complex geothermal system are improved by using water screen.

Study on the performance analysis of SCW geothermal system by simulation and monitoring (모니터링 및 시뮬레이션을 통한 SCW형 지열 시스템의 성능인자 분석에 관한 연구)

  • Lee, SangJun;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.8-15
    • /
    • 2013
  • Recently, an interest in the use of renewable energy has been growing up due to the rise of raw material price, international oil price and depletion of fossil energy. Ground source heat pump system has a high efficiency by using the constant temperature of underground and various types of the systems have been installed and utilized in the building. there are few studies on the system performance factors in the SCW system. Furthermore, even though the performance of the system depends on the temperature of heat source, the research on their relationship is rare. In this research, in order to analyze the performance factor for the open-loop system the monitoring of the real building with the standing column well systems and the simulation with building model were conducted.

A Study on Selection of Pipe Materials Considering EWT (EWT를 고려한 지중열교환기 파이프 선정에 관한 연구)

  • Ryu, Hyung-Kyou;Chung, Min-Ho;Lee, Byung-Seok;Choi, Hyun-Jun;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

Operation Characteristics of Open Type Geothermal Heat Pump (개방형 지열 히트펌프 시스템의 운전 특성)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Song, Yoon-Seok;Park, Seong-Koo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.701-706
    • /
    • 2006
  • Groundwater heat pump systems are the oldest of the ground-souce systems and it has various type. Standing column well type are must be located in hard rock geology site and produce sufficient water for the conventional open loop system. These system are indirect type(the building circulating loop and ground water are intercept). Existence of the exchanger the foundation protect water quality to use of open loop. The design of open loop system are concern on the power requirements. An experimental study was analysis the extremely heating operation COP of ground water heat pump system. Operation efficiency of the 50RT systems shows that, COP $2.9{\sim}5.0$ in heating operation. And generally it shows 3.4.

  • PDF

An Experimental Study of Ground Water Source Two Well Type Geothermal Heat Pump System (지하수 열원 복수정 지열 열펌프 시스템의 성능에 관한 실험적 연구)

  • Lim, Hyo-Jae;Kwon, Jeong-Tae;Kim, Chang-Eob;Kong, Hyoung-Jin;Park, Seong-Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2009
  • Ground water source heat pump system is the oldest one of the ground source heat pump systems. Despite of this, little formal design information has been available until recently. The important design parameters for open system are the identification of optimum ground water flow, heat exchanger selection and well pump. In this study, the capacity of 50 RT system of two well type ground water heat pump system was used. As a result, static water level was -7 m and the level during the heating operation was -32 m, cooling operation was -40 m. The initial static water level recovered within 48 hrs. The temperature of ground water is $15.6^{\circ}C$ for heating season and $16.2^{\circ}C$ for cooling season and does not depend on the outdoor temperature. Operation efficiency of the system shows that, COP 3.1 for heating and COP 4.2 for cooling.

Monitoring of Geothermal Systems Wells and Surrounding Area using Molecular Biological Methods for Microbial Species (분자생물학적 방법을 이용한 지열시스템 관정 및 주변지역 미생물종 모니터링)

  • Ahn, Chang-Min;Han, Ji-Sun;Kim, Chang-Gyun;Park, Yu-Chul;Mok, Jong-Koo;Jang, Bum-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.23-32
    • /
    • 2012
  • This study was conducted to monitor microbial species dynamics within the aquifer due to long term operation of geothermal heat pump system. The species were identified by molecular biological methods of 16S rDNA. Groundwater sample was collected from both open (S region) and closed geothermal recovery system (J region) along with the control. J measured and control as well as S measured found Ralstonia pickettii as dominant species at year 2010. In contrast, Rhodoferax ferrireducens was dominantly observed for the control of S. In 2011, Sediminibacterium sp. was universely identified as the dominant species regardless of the monitoring places and type of sample, i.e., measured or control. The difference in the dynamics between the measured and the control was not critically observed, but annual variation was more strikingly found. It reveals that possible environmental changes (e.g. ORP and DO) due to the operation of geothermal heat recovery system in aquifer could be more exceedingly preceded to differentiate annual variation of microbial species rather than positional differences.

Occurrences of Hot Spring and Potential for Epithermal Type Mineralization in Main Ethiopian Rift Valley (주 에티오피아 열곡대 내 온천수의 산출특성 및 천열수형 광상의 부존 잠재성)

  • Moon, Dong-Hyeok;Kim, Eui-Jun;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.267-278
    • /
    • 2013
  • The East African Rift System(EARS) is known to be hosted epithermal Au-Ag deposits, and the best-known example is Main Ethiopian Rift Valley(MER) related to Quaternary bimodal volcanism. Large horst-graben system during rifting provides open space for emplacement of bimodal magmas and flow channel of geothermal fluids. In recent, large hydrothermally altered zones(Shala, Langano, and Allalobeda) and hot spring related to deeply circulating geothermal water have been increasing their importance due to new discoveries in MER and Danakil depression. The hot springs in Shala and Allalobeda occur as boiling pool and geyser on the surface, whereas some areas didn't observe them due to decreasing ground water table. The host rocks are altered to quartz, kaolinite, illite, smectite, and chlorite due to interaction with rising geothermal water. The hot springs in MER are neutral to slightly alkaline pH(7.88~8.83) and mostly classified into $HCO_3{^-}$ type geothermal water. They are strongly depleted in Au, and Ag, but show a higher Se concentration of up to 26.7 ppm. In contrast, siliceous altered rocks around hot springs are strongly enriched in Pb(up to 33 ppm, Shala), Zn(up to 313 ppm, Shala), Cu(up to 53.1 ppm, Demaegona), and Mn(up to 0.18 wt%t, Shala). In conclusion, anomalous Se in hot spring water, Pb, Zn, Cu, and Mn in siliceous altered rocks, and new discoveries in MER have been increasing potential for epithermal gold mineralization.

Hydraulic feasibility study on the open-loop geothermal system using a pairing technology (복수정 페어링 기술을 이용한 개방형 지열 시스템의 수리적 타당성 검토)

  • Bae, Sangmu;Kim, Hongkyo;Kim, Hyeon-woo;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Purpose: Groundwater heat pump (GWHP) system has high coefficient of performance than conventional air-source heat pump system and closed-loop type geothermal system. However, there is problem in long-term operation that groundwater raise at the diffusion well and reduced at the supply well. Therefore, it is necessary to accurately predict the groundwater flow, groundwater movement and control the groundwater level in the wells. In this research, in consideration of hydrogeological characteristic, groundwater level and groundwater movement were conducted analysis in order to develop the optimal design method of the two-well system using the pairing pipe. Method: For the optimum design of the two-well system, this research focused on the design method of the pairing pipe in the simulation model. Especially, in order to control the groundwater level in wells, pairing pipe between the supply well and diffusion well was developed and the groundwater level during the system operation was analyzed by the numerical simulation. Result: As the result of simulation, the groundwater level increased to -2.65m even in the condition of low hydraulic conductivity and high pumping flow rate. Consequently, it was found that the developed system can be operated stably.