• Title/Summary/Keyword: onset date of season

Search Result 6, Processing Time 0.025 seconds

Onset Date of Forest Canopy Detected from MODIS Leaf Area Index

  • Kim, So-Hee;Kang, Sin-Kyu;Lim, Jong-Hwan
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • The timing of the canopy phenology onset (CPO hereafter) indicates the initiation of the growing season, with rapid increases in exchange rates of carbon dioxide and water vapor between vegetation and atmosphere. The CPO is regarded as a potential indicator of ecosystem responses to global warming, but the CPO shows considerable spatial variation depending on the species composition and local temperature regime. at a given geographic location. In this study, we evaluated the utility of satellite observation data for detection of the timing of the CPO. Leaf area indices (LAI) obtained from the Moderate Resolution Imaging Spectrora-diometer (MODIS) were utilized to detect and map the onset dates from 2001 to 2006. The reliability of MODIS-based onset dates was evaluated with ground measured cherry blossom flowering data from national weather stations. The MODIS onset dates preceded the observed flowering dates by 8 days and were linearly related with a correlation coefficient of 0.58 (p < 0.05). In spite of the coarse spatial (1 km) and temporal (8 days) resolutions of MODIS LAI, the MODIS-based onset dates showed reasonable ability to predict flowering dates.

Future Projections on the Spatial Distribution of Onset Date and Duration of Natural Seasons Using SRES A1B Data in South Korea (A1B 시나리오 자료를 이용한 우리나라 자연 계절 시작일 및 지속기간의 공간 분포 변화 전망)

  • Kwon, Young-Ah;Kwon, Won-Tae;Boo, Kyung-On
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.36-51
    • /
    • 2008
  • As the global warming has influenced on various sectors including agriculture, forestry, fisheries and health, it is essential to project more accurate future climate for an assessment of climate change impact and adaptation strategy. This study examines spatial distribution of onset dates and durations of season decomposed by applying a lowpass filtering using observed 30-year (1971-2000) data and projected 2090s data based on the IPCC SRES A1B emission scenario in South Korea. In general, the distributions of spring and winter onset date are affected by latitudes, topography and proximity to oceans. However, onset dates of summer and autumn are a little affected by proximity to oceans and topography than by latitudes. In the 2090s (2091-2100), the onset dates of spring begin about 40 days earlier and the onset dates of summer begin 25-30 days earlier as compare with present time. On the other hand, the onset dates of winter begin about 50 days later in the southern and eastern coastal area and in the southern inland. The onset dates of autumn begin about 20 days later. In the 2090s, summer duration is longer and winter duration is shorter as compare with present time at southern and eastern coastal area.

A Prediction Model for Forecast of the Onset Date of Changmas (장마 시작일 예측 모델)

  • Lee, Hyoun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.112-122
    • /
    • 1993
  • Since more than 50${\%}$ of annual precipitation in Korea falls during Changma, the rainy season of early summer, and Late Changma, the rainy season of late summer, forcasting the onset days Changmas, and the amount related rainfalls would be necessary not only for agriculture but also for flood-control. In this study the authors attempted to build a prediction model for the forecast of the onset date of Changmas. The onset data of each Changma was derived out of daily rainfall data of 47 stations for 30 years(1961~1990) and weather maps over East Asia. Each station represent any of the 47 districts of local forecast under the Korea Meteorological Administration. The average onset dates of Changma during the period was from 21 through 26 June. The dates show a tendency to be delayed in El Ni${\~{n}}o years while they come earlier than the average in La Nina years. In 1982, the year of El Ni${\~{n}}o, the date was 9 Julu, two weeks late compared with the average. The relation of sea surface temperature(SST) over Pacific and Northern hemispheric 500mb height to the Changma onset dates was analyzed for the prediction model by polynomial regression. The onset date of Changma over Korea was correlated with SST in May(SST${_(5)}{^\circ}$C) of the district (8${^\circ}$~12${^\circ}S, 136${^\circ}~148${^\circ}W)of equatirial middle Pacific and the 500mb height in March (MB${_(3)}$"\;"m)over the district of the notrhern Hudson Bay. The relation between this two elements can be expressed by the regression: Onset=5.888SST${_5}"\;"+"\;"0.047MB${_(3)}$"\;"-251.241. This equation explains 77${\%}$ of variances at the 0.01${\%}$ singificance level. The onset dates of Late Changma come in accordance with the degeneration of the Subtro-pical High over northern Pacific. They were 18 August in average for the period showing positive correlation(r=0.71) with SST in May(SST)${_(i5)}{^\circ}$C) over district of IndiaN Ocean near west coast of Australia (24${^\circ}$~32${^\circ}$S, 104${^\circ}$~112${^\circ}$E), but negativ e with SST in May(SST${_(p5)}{^\circ}$ over district (12${^\circ}$~20${^\circ}$S,"\;"136${^\circ}$~148${^\circ}$W)of equatorial mid Pacific (r=-0.70) and with the 500mb height over district of northwestern Siberia (r=-0.62). The prediction model for Late Changma can be expressed by the regression: Onset=706.314-0.080 MB-3.972SST${_(p5)}+3.896 SST${_(i5)}, which explains 64${\%}$ of variances at the 0.01${\%}$ singificance level.

  • PDF

Future Projections on the Change of Onset Date and Duration of Natural Seasons Using SRES A1B Data in South Korea (A1B 시나리오 자료를 이용한 우리나라 자연 계절 시작일 및 지속기간 변화 전망)

  • Kwon, Young-Ah;Kwon, Won-Tae;Boo, Kyung-On
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.835-850
    • /
    • 2007
  • This study examines long-term trends of onset dates and durations of season decomposed by applying a lowpass filtering using observed 80-year(1921-2000) data and projected 2040s and 2090s data based on the IPCC SRES A1B emission scenario in South Korea. As recent climate changes on seasonal cycles in South Korea, the onset dates of spring and summer began earlier after 1970s. But onset dates of autumn and winter were delayed. Winter duration was more shortened during the post-1990 period. Summer duration is longer and winter duration is shorter at southern and eastern coastal area. The different of summer duration and winter duration in coastal area was longer than over the inland. The reduction in winter duration in South Korea agrees with results in overall global warming trends as a climate change signal. Future model output data predict that winter will disappear in Gangneung, Busan and Mokpo in the 2090s

Change of Climatic Growing Season in Korea (한반도의 기후학적 식물생육기간의 변화)

  • Jung, Myung-Pyo;Shim, Kyo-Moon;Kim, Yongseok;Choi, In-Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.192-195
    • /
    • 2015
  • BACKGROUND: The growing season (GS) has been understood as a useful indicator for climate change due to high relationship with increasing temperature. Hear this study was conducted to examine changes in the thermal GS over South Korea from 1970 to 2013 based on daily mean air temperature for assessing the temporal and spatial variability in GS. METHODS AND RESULTS: Three GS parameters (starting date, ending date, and length) were determined at 19 stations throughout South Korea. The results show that the GS has been extended by 4.2 days/decade between 1970 and 2013 on average. The growing season start (GSS) has been advanced by 2.7 days/decade and the growing season end (GSE) has been delayed by 1.4 day/decade. Spatial variation in the GS parameters in Korea are shown. The GS parameters, especially GSS, of southeastern part of Korea have been changed more than that of northwestern part of Korea. The extension of GS may be more influenced on earlier onset in spring rather than later GSE. CONCLUSION: Under climate change scenarios, the GS will be more extended due to delayed GSE as well as advanced GSS. And These are more notable in the northeastern part of Korea.

Effect of High Temperature, Daylength, and Reduced Solar Radiation on Potato Growth and Yield (고온, 일장 및 저일사 조건이 감자 생육 및 수량에 미치는 영향)

  • Kim, Yean-Uk;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.74-87
    • /
    • 2016
  • Potato phenology, growth, and yield are projected to be highly affected by global warming in the future. The objective of this study was to examine the responses of potato growth and yield to environmental elements like temperature, solar radiation, and daylength. Planting date experiments under open field condition were conducted using three cultivars differing in maturity group (Irish Cobbler and Superior as early; Atlantic as mid-late maturing) at eight different planting dates. In addition, elevated temperature experiment was conducted in four plastic houses controlled to target temperatures of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3^{\circ}C$, and $AT+5^{\circ}C$ using cv. Superior. Tuber initiation onset was found to be hastened curve-linearly with increasing temperature, showing optimum temperature around $22-24^{\circ}C$, while delayed by longer photoperiod and lower solar radiation in Superior and Atlantic. In the planting date experiments where the average temperature is near optimal and solar radiation, rainfall, pest, and disease are not limiting factor for tuber yield, the most important determinant was growth duration, which is limited by the beginning of rainy season in summer and frost in the late fall. Yield tended to increase along with delayed tuber initiation. Within the optimum temperature range ($17^{\circ}-22^{\circ}C$), larger diurnal range of temperature increased the tuber yield. In an elevated temperature treatment of $AT+5.0^{\circ}C$, plants failed to form tubers as affected by high temperature, low irradiance, and long daylength. Tuber number at early growth stage was reduced by higher temperature, resulting in the decrease of assimilates allocated to tuber and the reduction of average tuber weight. Stem growth was enhanced by elevated temperature at the expense of tuber growth. Consequently, tuber yield decreased with elevated temperature above ambient and drop to almost nil at $AT+5.0^{\circ}C$.