• Title/Summary/Keyword: online process monitoring

Search Result 66, Processing Time 0.021 seconds

MTReadable: Arabic Readability Corpus for Medical Tests Information

  • Alahmdi, Dimah;Alghamdi, Athir Saeed;Almuallim, Neda'a;Alarifi, Suaad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.84-89
    • /
    • 2021
  • Medical tests are very important part of the health monitoring process. It is performed for various reasons like diagnosing diseases, determining medications effectiveness, etc. Due to that, patients should be able to read and understand the available online tests and results in order to take proper decisions regarding their health condition. In fact, people are varying in their educational level and health backgrounds that make providing such information in an easily readable format by the majority of people considered as a challenge in the health domain since ever. This paper describes the MTReadable corpus which constructed for evaluating the readability of online medical tests. It covered 32 basic periodic check-up tests with over 36k words. These tests information are annotated and labelled based on three readability levels which are easy, neutral and difficult by three non-specialists native Arabic speakers. This paper contributes to enriching the Arabic health research community with an investigation of the level of readability of online medical tests and to be a baseline for further complex health online reports and information.

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

Remote-Controlled Experiment with Integrated Verification of Learning Outcome

  • Staudt, Volker;Menzner, Stefan;Baue, Pavol
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.604-610
    • /
    • 2010
  • Experiments in electrical engineering should mirror the key components of successful research and development: Understand the basic theory needed, test the resulting concepts by simulation and verify these, finally, in the experiment. For optimal learning outcome continuous monitoring of the progress of each individual student is necessary, immediately repeating those subjects which have not been learned successfully. Classically, this is the task of the teacher. In case of remote-controlled experiments this monitoring process and the repetition of subjects should be automated for optimal learning outcome. This paper describes a remote-controlled experiment combining theory, simulation and the experiment itself with an automated monitoring process. Only the evaluation of the experimental results and their comparison to the simulation results has to be checked by a teacher. This paper describes the details of the educational structure for a remote-controlled experiment introducing active filtering of harmonics. For better understanding the content of the learning material (theory and simulation) as well as the results of the experiment and the underlying booking system are shortly presented.

Automation Monitoring With Sensors For Detecting Covid Using Backpropagation Algorithm

  • Kshirsagar, Pravin R.;Manoharan, Hariprasath;Tirth, Vineet;Naved, Mohd;Siddiqui, Ahmad Tasnim;Sharma, Arvind K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2414-2433
    • /
    • 2021
  • This article focuses on providing remedial solutions for COVID disease through the data collection process. Recently, In India, sudden human losses are happening due to the spread of infectious viruses. All people are not able to differentiate the number of affected people and their locations. Therefore, the proposed method integrates robotic technology for monitoring the health condition of different people. If any individual is affected by infectious disease, then data will be collected and within a short span of time, it will be reported to the control center. Once, the information is collected, then all individuals can access the same using an application platform. The application platform will be developed based on certain parametric values, where the location of each individual will be retained. For precise application development, the parametric values related to the identification process such as sub-interval points and intensity of detection should be established. Therefore, to check the effectiveness of the proposed robotic technology, an online monitoring system is employed where the output is realized using MATLAB. From simulated values, it is observed that the proposed method outperforms the existing method in terms of data quality with an observed percentage of 82.

A Study on Continuous Monitoring Reinforcement for Sales Audit Using Process Mining Under Big Data Environment (빅데이터 환경에서 프로세스 마이닝을 이용한 영업감사 상시 모니터링 강화에 대한 연구)

  • Yoo, Young-Seok;Park, Han-Gyu;Back, Seung-Hoon;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.123-131
    • /
    • 2016
  • Process mining in big data environment utilize a number of data were generated from the business process. It generates lots of knowledge and insights regarding implementation and improvement of the process through the event log of the company's enterprise resource planning (ERP) system. In recent years, various research activities engaged with the audit work of company organizations are trying actively by using the maximum strength of the mining process. However, domestic studies on applicable sales auditing system for the process mining are insufficient under big data environment. Therefore, we propose process-mining methods that can be optimally applied to online and traditional auditing system. In advance, we propose continuous monitoring information system that can early detect and prevent the risk under the big data environment by monitoring risk factors in the organizations of enterprise. The scope of the research of this paper is to design a pre-verification system for risk factor via practical examples in sales auditing. Furthermore, realizations of preventive audit, continuous monitoring for high risk, reduction of fraud, and timely action for violation of rules are enhanced by proposed sales auditing system. According to the simulation results, avoidance of financial risks, reduction of audit period, and improvement of audit quality are represented.

Membrane Introduction Mass Spectrometry (MIMS) for Online, Real Time Analysis of Organic Substances

  • 박현채
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.29-32
    • /
    • 1994
  • The increasing environmental risks exert strong demands for the knowledge of environmentally significant compounds and the reduction of such compounds on the earth. The risk reduction can, in principle, be most effectively achieved by minimizing the formation of environmental pollutants, by-products in many cases, during processes in factories, power plants and other sources. This can be done by on-line, real time monitoring the formation of pollutants at the moment when they are formed, and thereby through the feed-back control of the process.

  • PDF

Real-time Water Quality Prediction for Evaluation of Influent Characteristics in a Full-scale Sewerage Treatment Plant (하수처리장 유입수의 특성평가를 위한 실시간 수질예측)

  • Kim, Youn-Kwon;Chae, Soo-Kwon;Han, In-Sun;Kim, Ju-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2010
  • It is the most important subject to figure out characteristics of the wastewater inflows of sewerage treatment plant(STP) when situation models are applied to operation of the biological processes and in the automatic control based on ICA(Instrument, Control and Automation). For the purposes, real-time influent monitoring method has been applied by using on-line monitoring equipments for the process optimization in conventional STP. Since, the influent of STP is consist of complex components such as, COD, BOD, TN, $NH_4$-N, $NO_3$-N, TP and $PO_4$-P. MRA2(Microbial Respiration Analyzer 2), which is capable of real-time analyzing of wastewater characteristics is used to overcome the limitations and defects of conventional online monitoring equipments in this study. Rapidity, accuracy and stability of developed MRA2 are evaluated and compared with the results from on-line monitoring equipments for seven months after installation in Full-scale STP.

Developing a Prototype of Motion-sensing Smart Leggings (동작센싱 스마트레깅스 프로토타입 개발)

  • Jin-Hee Hwang;Seunghyun Jee;Sun Hee Kim
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.694-706
    • /
    • 2022
  • This study focusses on the development of a motion-sensing smart leggings prototype with the help of a module that monitors motion using a fiber-type stretch sensor. Additionally, it acquires data on Electrocardiogram (ECG), respiration, and body temperature signals, for the development of smart clothing used in online exercise coaching and customized healthcare systems. The research process was conducted in the following order: 1) Fabrication of a fiber-type elastic strain sensor for motion monitoring, 2) Positioning and attaching the sensor, 3) Pattern development and three-dimensional (3D) design, 4) Prototyping 5) Wearability test, and 6) Expert evaluation. The 3D design method was used to develop an aesthetic design, and for sensing accurate signal acquisition functions, wearability tests, and expert evaluation. As a result, first, the selection or manufacturing of an appropriate sensor for the function is of utmost importance. Second, the selection and attachment method of a location that can maximize the function of the sensor without interfering with any activity should be studied. Third, the signal line selection and connection method should be considered, and fourth, the aesthetic design should be reflected along with functional verification. In addition, the selection of an appropriate material is important, and tests for washability and durability must be made. This study presented a manufacturing method to improve the functionality and design of smart clothing, through the process of developing a prototype of motion-sensing smart leggings.

Development of a dynamic sensing system for civil revolving structures and its field tests in a large revolving auditorium

  • Luo, Yaozhi;Yang, Pengcheng;Shen, Yanbin;Yu, Feng;Zhong, Zhouneng;Hong, Jiangbo
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.993-1014
    • /
    • 2014
  • In civil engineering, revolving structures (RS) are a unique structural form applied in innovative architecture design. Such structures are able to revolve around themselves or along a certain track. However, few studies are dedicated to safety design or health monitoring of RS. In this paper, a wireless dynamic sensing system is developed for RS, and field tests toward a large revolving auditorium are conducted accordingly. At first, a wheel-rail problem is proposed: The internal force redistributes in RS, which is due to wheel-rail irregularity. Then the development of the sensing system for RS is presented. It includes system architecture, network organization, vibrating wire sensor (VWS) nodes and online remote control. To keep the sensor network identifiable during revolving, the addresses of sensor nodes are reassigned dynamically when RS position changes. At last, the system is mounted on a huge outdoor revolving auditorium. Considering the influence of the proposed problem, the RS of the auditorium has been designed conservatively. Two field tests are conducted via the sensing system. In the first test, 2000 people are invited to act as the live load. During the revolving process, data is collected from RS in three different load cases. The other test is the online monitoring for the auditorium during the official performances. In the end, the field-testing result verifies the existence of the wheel-rail problem. The result also indicates the dynamic sensing system is applicable and durable even while RS is rotating.

Dynamic Yield Improvement Model Using Neural Networks (신경망을 이용한 동적 수율 개선 모형)

  • Jung, Hyun-Chul;Kang, Chang-Wook;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.132-139
    • /
    • 2009
  • Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring technology, many industries operate the production lines that are developed into automation system. In these production lines, the product structures are very complexity and variety. So, there are many multi-variate processes that need to be monitored with many quality characteristics and associated process variables at the same time. These situations have made it possible to obtain super-large manufacturing process data sets. However, there are many difficulties with finding the cause of process variation or useful information in the high capacity database. In order to solve this problem, neural networks technique is a favorite technique that predicts the yield of process for process control. This paper uses a neural networks technique for improvement and maintenance of yield in manufacturing process. The purpose of this paper is to model the prediction of a sub process that has much effect to improve yields in total manufacturing process and the prediction of adjustment values of this sub process. These informations feedback into the process and the process is adjusted. Also, we show that the proposed model is useful to the manufacturing process through the case study.