Browse > Article
http://dx.doi.org/10.5805/SFTI.2022.24.6.694

Developing a Prototype of Motion-sensing Smart Leggings  

Jin-Hee Hwang (Dept. of Beauty Industry, Incheon National University)
Seunghyun Jee (Mcell Co., Ltd.)
Sun Hee Kim (Dept. of Fashion Industry, Incheon National University)
Publication Information
Fashion & Textile Research Journal / v.24, no.6, 2022 , pp. 694-706 More about this Journal
Abstract
This study focusses on the development of a motion-sensing smart leggings prototype with the help of a module that monitors motion using a fiber-type stretch sensor. Additionally, it acquires data on Electrocardiogram (ECG), respiration, and body temperature signals, for the development of smart clothing used in online exercise coaching and customized healthcare systems. The research process was conducted in the following order: 1) Fabrication of a fiber-type elastic strain sensor for motion monitoring, 2) Positioning and attaching the sensor, 3) Pattern development and three-dimensional (3D) design, 4) Prototyping 5) Wearability test, and 6) Expert evaluation. The 3D design method was used to develop an aesthetic design, and for sensing accurate signal acquisition functions, wearability tests, and expert evaluation. As a result, first, the selection or manufacturing of an appropriate sensor for the function is of utmost importance. Second, the selection and attachment method of a location that can maximize the function of the sensor without interfering with any activity should be studied. Third, the signal line selection and connection method should be considered, and fourth, the aesthetic design should be reflected along with functional verification. In addition, the selection of an appropriate material is important, and tests for washability and durability must be made. This study presented a manufacturing method to improve the functionality and design of smart clothing, through the process of developing a prototype of motion-sensing smart leggings.
Keywords
online exercise coaching; smart clothing; textile-based strain sensor; motion-sensing; biosignal monitoring;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 'AIO Sleeve'. (2018). KOMODO. Retrieved April 8, 2022, from https://komodotec.com/product/aio-sleeve/
2 'Athos'. (2012). Liveathos. Retrieved April 8, 2022, from https://torontolife.com/style/athos-wearable-tech-workout-gear-sportchek/
3 'Bio Man100'. (2017). AiQ Smart Clothing. Retrieved April 1, 2022, from https://www.aiqsmartclothing.com/product service/ biomanplus/
4 'Cityzen Dshirt'. (2008). Cityzen Sciences. Retrieved April 8, 2022, from http://cityzensciences.fr/en
5 'Catapult'. (2006). Payertek. Retrieved April 12, 2022, from https://www.catapultsports.com/
6 Chae, J. M., Cho, H. S., & Lee, J. H. (2009). A study on consumer acceptance of commercialized smart clothing. Emotional Science, 12(2), 181-192.
7 Cho, H. Y., Lee, J. H., Lee, C. K., & Lee, M. H. (2006). Development of smart clothing design prototype for healthcare based on biosignal measurement technology. Korean HCI Society Conference, 9(2), pp. 141-150.
8 Cho, G. S., Yang, Y. J., & Seong, M. S. (2008). Bio-monitoring smart clothing and E-textile development status. Journal of the Korean Apparel Industry Association, 10(1), 1-10.
9 Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies - A review. Smart materials & structures, 23(5), 053001. doi:10.1088/0964-1726/23/5/053001   DOI
10 Dehghani, M., Abubakar., A. M., & Pashna, M. (2022), Market-driven management of start-ups - The case of wearable technology. Applied Computing and Informatics, 18(2), 45-60. doi:10.1016/j.aci.2018.11.002   DOI
11 'Healthwatch'. (2012). Master Attention. Retrieved April 4, 2022, from https://www.healthwatch.co.uk/
12 Hong, Y. H. (2017). A study on improving the performance of a smart jacket for cycling. Unpublished master's thesis, Seoul National University, Seoul
13 Haghi, M., Thurow, K., & Stoll, R. (2017). Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare informatics research, 23(1), 4-15. doi:10.4258/hir.2017.23.1.4   DOI
14 Huang, C. T., Shen, C. L., Tang, C. F., & Chang. S. H. (2008). A wearable yarn-based piezo-resistive sensor, Sensors and Actuators A: Physical, 141(2), 396-403, doi:10.1016/j.sna.2007.10.069   DOI
15 Kim, C. M., Kang, K. H., & Kim, E. S. (2015). Active spinning training system using complex biosignals. Journal of the Korean Contents Association, 15(7), 591-600. doi:10.5392/JKCA.2015.15.07.591   DOI
16 Jang, E. J., Jo, H. S., & Cho, G. S. (2018). Development of Nanoweb based PEDOT:PSS electrode prototype for active senior's EMG measuring smart clothing. Fall Conference of the Korean Society for Emotional Performance, Korea, pp. 37-38.
17 Ko, J. H., Jee, S. H., Lee, J. H., & Kim. S. H. (2018). High durability conductive textile using MWCNT for motion sensing. Sensors and Actuators A, 274, 50-56. doi:10.1016/j.sna.2018.02.037   DOI
18 Kim, J. D., Kim, K. J., Chung, G. S., Lee, J. H., Ahn, J. H., & Lee, S. G. (2010). The mobile health-care garment system for measurement of cardiorespiratory signal. The KIPS Transactions - PartA, 17A(3), 145-152. doi:10.3745/KIPSTA.2010.17A.3.145   DOI
19 Korea Health Promotion and Development Institute. (2020). Current status and development direction of public digital health care services. Seoul: Korea Health Promotion Institute
20 Kim, S., & Ryoo, K. (2019). Research on information & communication work business in response to the Fourth Industrial Revolution. The Journal of the Convergence on Culture Technology, 5(1), 139-146. doi:10.17703/JCCT.2019.5.1.139   DOI
21 Kang, K. Y., & Jin, H. J. (2008). Transactions - The study on the perceived risk and product innovativeness evaluation of smart clothing. Fashion & Textile Research Journal, 10(5), 618-624.
22 Lee, S. M., & Lee, D. (2020). Healthcare wearable devices - An analysis of key factors for continuous use intention. Service Business, 14(4), 503-531. doi:10.1007/s11628-020-00428-3   DOI
23 Ministry of Trade, Industry & Energy. (2021). 2020 Textile Industry Digital Professional Talent Cultivation Plan, Textile Industry Digital Professional Talent Cultivation Plan Final Report. Sejong : Government Printing Office.
24 Lee, J. K., Chu, H. J., & Kim, H. Y. (2021). Product case study of smart clothing - Focusing on smart clothing patent application technology. Journal of the Korean Society of Clothing and Textiles, 45(1), 28-45. doi:10.5850/JKSCT.2021.45.1.28   DOI
25 Lee, J. K., Lee, S., Kim, J. G., Min, B. K., Kim, Y. I., Lee, K. I., An, K. H., & John, P. (2014). Structure of single-wall carbon nanotubes - A graphene helix. Small, 10(16), 3283-3290. doi:10.1002/smll.201400884   DOI
26 Lee, J. E. (2020). Development of strain sensor-based smart step compression leggings. Unpublished doctoral dissertation, Chonnam National University, Gwangju
27 'OMbra'. (2011). Smart Clothing Lab. Retrieved April 8, 2022, from https://smartclothinglab.com/brands/omsignal/
28 Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337-344, doi:10.1109/TITB.2005.854512   DOI
29 Park, S. Y. & Lee, J. H. (2018). Development of design prototype of smart fitness wear for self-training based on qualitative analysis of consumer demand. Journal fo the Korean Society Design Culture, 24(2), 257-267. doi:10.18208/ksdc.2018.24.2.257   DOI
30 Roh, J. S. (2016). Wearable textile strain sensors. Fashion & Textile Research Journal, 18(6), 733-745. doi:10.5805/SFTI.2016.18.6.733   DOI
31 Research and Development Special Zone Promotion Foundation. (2020). Smart clothing market. Seoul: Author.
32 Small and Medium Business Technology Information Promotion Agency. (2021). SME Strategic Technology Roadmap_Bio Health 2020-2022. Sejong: Jinhan M&B
33 'Sensoria® smart T-shirt'. (2012). Sensoria. Retrieved April 8, 2022, from https://www.sensoriafitness.com/
34 'Siren Smart Socks'. (2016). Siren. Retrieved April 12, 2022, from https://www.siren.care/certified-providers/
35 Song, H. Y., Kim, J. E., & Kim, T. N. (2020). Artificial intelligence and health communication. Journal of Communication Research, 57(3), 196-238. doi:10.22174/jcr.2020.57.3.196   DOI
36 Shim, B. S., Chen, W., Doty, C., Xu, C., & Kotov, N. A. (2008). Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Letters, 8(12), 4151-4157. doi:10.1021/nl801495p   DOI
37 'SUPA Powered Sports Bra'. (2016). Movesense. Retrieved April 12, 2022, from https://www.movesense.com/showcase/supa/
38 Technology development trends and application cases and industry analysis for each major application field of smart textiles. (2021). Seoul: Good Information.
39 Tsai, T., You, K., Ma, Y., & Chao, Y. (2014). CGU smart clothes platform - Development of a gateway device and real-time mobile display. IEEE-EMBS Diagnostics and Health Informatics (BHI), pp. 17-20. doi:10.1109/BHI.2014.6864293.   DOI
40 'Nadi X'. (2016). Wearable X. Retrieved April 4, 2022, from https://www.wearablex.com/pages/how-it-works
41 Wang, C., Xia, K., Wang, H., Liang, X., Yin, Z., & Zhang, Y. (2018), Advanced carbon for flexible and wearable electronics. Advanced Materials, 31(9), 1801072. doi:10.1002/adma.201801072   DOI
42 Yamada, T., Hayamizu, Y., & Yamamoto, Y. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech 6, 296-301. doi:10.1038/nnano.2011.36   DOI
43 Wang, J., Lu, C., & Zhang, K. (2019). Textile-based strain sensor for human motion detection. Energy Environ. Mater, 3, 80-100. doi:10.1002/eem2.12041   DOI