As the online game industry has been growing rapidly, more and more malicious activities to gain economic benefits have been reported as well. Game bot is one of the biggest problems in the online game industry. So we proposed a bot detection method based on the ERG theory of motivation for the first time. Most of the previous studies focused on behavior-based detection by monitoring patterns of the specific actions. In this paper, we applied the motivation theory to analyze user behaviors on a real game dataset. The result shows that normal users in the game followed the ERG theory of motivation in the same way as it works in real world. But in the case of game bots, the theory could not be applied because the game bot has specific reasons, unlike normal game users. We applied the ERG theory to users to distinguish game bot users from normal users. We detected the game bot with high accuracy of 99.78% by applying the theory.
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.6
/
pp.1431-1439
/
2017
In the security field, log analysis is important to detect malware or abnormal behavior. Recently, image visualization techniques for malware dectection becomes to a major part of security. These techniques can also be used in online games. Users can leave a game when they felt bad experience from game bot, automatic hunting programs, malicious code, etc. This churning can damage online game's profit and longevity of service if game operators cannot detect this kind of events in time. In this paper, we propose a new technique of PNG image conversion based churn prediction to improve the efficiency of data analysis for the first. By using this log compression technique, we can reduce the size of log files by 52,849 times smaller and increase the analysis speed without features analysis. Second, we apply data mining technique to predict user's churn with a real dataset from Blade & Soul developed by NCSoft. As a result, we can identify potential churners with a high accuracy of 97%.
An online game is a huge distributed system comprised of servers and untrusted clients. In such circumstances, cheaters may employ abnormal behaviors through client modification or network packet tampering. Client-side detection methods have the merit of distributing the burden to clients but can easily be breached. In the other hand, server-side detection methods are trustworthy but consume tremendous amount of resources. Therefore, this paper proposes a security reinforcement method which involves both the client and the server. This method is expected to provide meaningful security fortification while minimizing server-side stress.
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.5
/
pp.1069-1076
/
2017
Recently $Pok\acute{e}mon$ GO implements an online game with location-based real time augmented reality on mobile. The correct play of this game should be based on collecting the $Pok\acute{e}mon$ that appears as the user moves around by foot, but as the popularity increases, it appears an abuse to play easily. Many people have used an application that provides a mock location service such as Fake GPS, and these applications can be judged to be cheating in online games because they can play games in the house without moving. Detection of such cheating from a client point of view (mobile device) can consume a large amount of resources, which can reduce the speed of the game. It is difficult for developers to apply detection methods that negatively affect game usage and user's satisfaction. Therefore, in this paper, we propose a method to detect users abusing mock location service in online game by route analysis using GPS location record from the server point of view.
Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.1
/
pp.93-107
/
2016
Game bot playing is one of the main risks in Massively Multi-Online Role Playing Games(MMORPG) because it damages overall game playing environment, especially the balance of the in-game economy. There have been many studies to detect game bot. However, the previous detection models require continuous maintenance efforts to train and learn the game bots' patterns whenever the game contents change. In this work, we have proposed a machine learning technique using the self-similarity property that is an intrinsic attribute in game bots and automated maintenance system. We have tested our method and implemented a system to major three commercial games in South Korea. As a result, our proposed system can detect and classify game bots with high accuracy.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.157-163
/
2022
As the online game market grows, the use of game bots is causing the most serious problem for game services. We propose a harvest coordinate analysis model to detect harvesting bots among game bots of the Massively Multiplayer Online Role-Playing Games(MMORPGs) genre. The proposed model analyzes the player's harvesting behavior using the coordinate data. Game bots can obtain in-game goods and items more easily than normal players and are not affected by realistic restrictions such as sleep time and character manipulation fatigue. As a result, there is a difference in harvesting coordinates between normal players and game bots. We divided the coordinate zones and used these coordinate zone differences to distinguish between game bot players and normal players. We created a dataset with NCSoft's AION log and applied it to a random forest model to detect game bots, and as a result, we derived performance with a recall of 0.72 and a precision of 0.92.
International Journal of Computer Science & Network Security
/
v.22
no.6
/
pp.390-399
/
2022
Cyber security and resilience are phrases that describe safeguards of ICTs (information and communication technologies) from cyber-attacks or mitigations of cyber event impacts. The sole purpose of Risk models are detections, analyses, and handling by considering all relevant perceptions of risks. The current research effort has resulted in the development of a new paradigm for safeguarding services offered online which can be utilized by both service providers and users. customers. However, rather of relying on detailed studies, this approach emphasizes task selection and execution that leads to successful risk treatment outcomes. Modelling intelligent CSGs (Cyber Security Games) using MLTs (machine learning techniques) was the focus of this research. By limiting mission risk, CSGs maximize ability of systems to operate unhindered in cyber environments. The suggested framework's main components are the Threat and Risk models. These models are tailored to meet the special characteristics of online services as well as the cyberspace environment. A risk management procedure is included in the framework. Risk scores are computed by combining probabilities of successful attacks with findings of impact models that predict cyber catastrophe consequences. To assess successful attacks, models emulating defense against threats can be used in topologies. CSGs consider widespread interconnectivity of cyber systems which forces defending all multi-step attack paths. In contrast, attackers just need one of the paths to succeed. CSGs are game-theoretic methods for identifying defense measures and reducing risks for systems and probe for maximum cyber risks using game formulations (MiniMax). To detect the impacts, the attacker player creates an attack tree for each state of the game using a modified Extreme Gradient Boosting Decision Tree (that sees numerous compromises ahead). Based on the findings, the proposed model has a high level of security for the web sources used in the experiment.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.5
/
pp.1077-1084
/
2015
Security issues such as an illegal acquisition of personal information and identity theft happen due to using game bots in online games. Game bots collect items and money unfairly, so in-game contents are rapidly depleted, and honest users feel deprived. It causes a downturn in the game market. In this paper, we defined the growth types by analyzing the growth processes of users with actual game data. We proposed the framework that classify hard-core users and game bots in the growth patterns. We applied the framework in the actual data. As a result, we classified five growth types and detected game bots from hard-core users with 93% precision. Earlier studies show that hard-core users are also detected as a bot. We clearly separated game bots and hard-core users before full growth.
Illegal game players' hacking and propagation of malignant code in online game exposes privacy of online game customers. So, online game companies have to support the standardized systems and operations of customers' privacies. Since online game companies implement authentication of information protection, which focuses on assets or physical, systemic security, they need a more professional system that is related to protection of individual privacy. We analyzed the individual information protection system, which includes ISO27001, ISMS of KISA, GMITS, ePrivacy, online game privacy protection guide, and BS10012. Using the suggested systems, we proposed the systemic tools that measure the level of individual information protection, which includes process and check items of each phase.
Journal of the Korea Institute of Information Security & Cryptology
/
v.31
no.6
/
pp.1097-1104
/
2021
Online game-bots are already known for a lot of persons by various ways. It leads to problems such as declining game player's interest, in-game financial crisis, etc. Detecting and restricting of game-bot is now essential. Because both publishers and players get disadvantages from their long term abnormal working. But it is not easy to restrict, because of false restriction risks. Game publishers need to distinguish game-bot from server-side game logs. At last, it should can make reasons for game-bot restriction. In this paper, we classified game-bot users by using daily separated game logs for testing data. For daily-driven detection, we separated total dataset into one day logs. Preliminary detects game-bots with one day logs, and determines total results by using these data. Daily driven detection advantages on detection which contains combined game playing style. Which shows like normal user and game-bot. These methodology shows better F1-score, which one of indicator which demonstrate classification accuracy. It increases from 0.898 to 0.945 by using Random Forest classifier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.