Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.
A separate and distinct interaction with both the actual e-vendor and with its IT web site interface is at the heart of online shopping. Previous research has established, accordingly, that online purchase intention is the product of customer assessments of IT itself, specifically its perceived usefulness and ease-of-use(TAM). Since perceived usefulness and perceived ease of use are such a fundamental driver of usage intentions, it is important to understand the determinants of this construct and how their influence changes over the voluntariness towards the usage intention. The reason for voluntariness as a moderating variable is that it had the serious effect to the motivating in the making willingness of the internet shopping-mall usage. A better understanding of the determinants of perceived usefulness and perceived ease of use to the usage intention would enable us to design web site interventions that would increase user acceptance and usage of internet shopping-mall. Therefore, the goal of the present research is to extend TAM to include additional key determinants of TAM and to understand how the effects of these determinants change with the voluntariness of the usage intention of the internet shopping-mall.
As digital technology converges into the e-commerce market across industries, online transactions have activated, and the use of online has increased. With the recent spread of infectious diseases such as COVID-19, this market flow is accelerating, and various product information can be provided to customers online. Providing a variety of information provides customers with various opportunities but causes difficulties in decision-making. The recommendation system can help customers to make a decision more effectively. However, the previous research on recommendation systems is limited to only quantitative data and does not reflect detailed factors of products and customers. In this study, we propose an intelligent recommendation system that quantifies the attributes of products and customers by applying text mining techniques to qualitative data based on online reviews and integrates the existing objective indicators of total star rating, sentiment, and emotion. The proposed integrated recommendation model showed superior performance to the overall rating-oriented recommendation model. It expects the new business value to be created through the recommendation result reflecting detailed factors of products and customers.
The Journal of the Convergence on Culture Technology
/
v.10
no.2
/
pp.493-498
/
2024
With the rapid advancement of generative artificial intelligence technology, there is growing interest in how to utilize it in practical applications. Additionally, the importance of prompt engineering to generate results that meet user demands is being newly highlighted. Exploring the new possibilities of generative AI can hold significant value. This study aims to utilize ChatGPT 4.0, a leading generative AI, to propose an effective method for evaluating user experience through the analysis of online customer review data. The user experience evaluation method was based on the six-layer elements of user experience: 'functionality', 'reliability', 'usability', 'convenience', 'emotion', and 'significance'. For this study, a literature review was conducted to enhance the understanding of prompt engineering and to grasp the clear concept of the user experience hierarchy. Based on this, prompts were crafted, and experiments for the user experience evaluation method were carried out using the analysis of collected online customer review data. In this study, we reveal that when provided with accurate definitions and descriptions of the classification processes for user experience factors, ChatGPT demonstrated excellent performance in evaluating user experience. However, it was also found that due to time constraints, there were limitations in analyzing large volumes of data. By introducing and proposing a method to utilize ChatGPT 4.0 for user experience evaluation, we expect to contribute to the advancement of the UX field.
Online consumer reviews provide a variety of information from the customer perspective in terms of satisfaction and dissatisfaction. Negative emotional expression is a potential antecedent of review usefulness, and can also influence potential consumers' attitudes and decisions. In addition, because national culture provides a perspective from which individuals view the world and act, it is highly likely that differences in negative emotional expression will occur depending on culture. This study explores the relationship between national culture and negative emotional expression based on impression management theory and ultimately analyzes the impact on review usefulness. For empirical analysis, 16,076 reviews of 140 hotels located in Seoul were collected and analyzed using the PLS-SEM method. As a result of the analysis, it was found that power distance and masculinity culture dimensions had a positive effect on reviewers' negative emotional expressions, while uncertainty avoidance and long-term orientation had a negative effect. In addition, negative emotional expression was analyzed to have a positive effect on review usefulness even when review ratings were controlled.
This study conducted both big data and netnography analysis to analyze consumer needs and behaviors of online consumer community. Big data analysis is easy to identify correlations, but causality is difficult to identify. To overcome this limitation, we used netnography analysis together. The netnography methodology is excellent for context grasping. However, there is a limit in that it is time and costly to analyze a large amount of data accumulated for a long time. Therefore, in this study, we searched for patterns of overall data through big data analysis and discovered outliers that require netnography analysis, and then performed netnography analysis only before and after outliers. As a result of analysis, the cause of the phenomenon shown through big data analysis could be explained through netnography analysis. In addition, it was able to identify the internal structural changes of the community, which are not easily revealed by big data analysis. Therefore, this study was able to effectively explain much of online consumer behavior that was difficult to understand as well as contextual semantics from the unstructured data missed by big data. The big data-netnography integrated model proposed in this study can be used as a good tool to discover new consumer needs in the online environment.
As a new type of business model in the market competition situation of tour companies, this study has developed to the online form of the travel industry to the business form which is the combination of the electronic commerce function and the mobile service process in the provision of the simple web-site, This study explores the difficulties of change for the development of the travel industry from the point of view that recognition is not a simple marketing strategy diversification means but a change of recognition as a business model for expanding new markets or creating new markets. The factors affecting the choice of online travel agent (OTA) and the factors that influence the choice of online travel agency were analyzed. Were used for the empirical survey. The purpose of this study is to investigate the factors influencing the choice of online travel agents who have experience with or experience using online travel agency (OTA), what factors are important to them, and how they differ in importance when visiting again. The results of this study are as follows: First, there was a significant difference between the first and second visitors of online travel agencies. The results of this study were as follows: Attitude toward resolving complaints, convenience of change and cancellation, delivery of tickets and documents, convenience of complaints, The emphasis should be on establishing and strengthening service environments such as the speed of updating the latest information, the simplicity of the booking procedure, the degree of satisfaction of the past, the ability of employees to handle their work, the safety of various payment methods and settlement, The results of this study are as follows: First, the satisfaction of the online travel agency is influenced by the selection factors of the selected online tour agency, and the A/S such as the convenience of prompt delivery, Environmental factors contributed to satisfaction. It is suggested that the systematic service structure such as customer satisfaction and ease of use is a necessary marketing strategy for survival and development of online travel agencies. It is suggested that the marketing concentration strategy with the first visitors as the target market is effective and this is a part of the marketing strategy for the survival of online travel agencies.
User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.
With the 4th industrial revolution, the traditional logistics is shifting to the smart logistics, and it has led to rapid growth of logistics startup companies to support smart logistics. They build their mobile applications and customize their services in the areas of freight transport, parcel delivery services, freight tracking, on-demand logistics, transport intermediary platforms, online-to-offline business, and last mile delivery. In order for logistics startup to be successful, it should lead to sales and profit through customer satisfaction and continuous use by developing highly usable mobile applications. The evaluation of usability of mobile application should use different evaluation criteria from Web based applications because of the inherent characteristics of mobile phone. The purpose of this study is to evaluate the usability of the mobile application provided by the logistics startup and to draw out implications and improvement plans. Through the literature review, we will review the concept of smart logistics. Thus we derive the usability criteria suitable for mobile applications and perform usability testing.
This study suggest that firms can use online brand communities as an IMC tool to achieve high brand loyalty through marketer-controlled or loyal customer-controlled brand contacts. In this perspective, the online brand community as a marketing communication tool can help the firm in eliciting favorable responses from customers. This study finds that an online brand community, as a critical marketing promotion tool, helps a firm elicit favorable relationship with customers and build strong brand loyalty. In particular, this study suggests several important theoretical and managerial implications. First, this study confirm that "advertising usefulness" is the most powerful and important factor that affects cgerial 's positive emotionomehile "sales promotion usefulness" impacmehin "interactivity" but dies not impacmhin "cgerial iexperience"ltyevent usefulness" impacmehin "cgerial iexperience"but dies not impacmhin "interactivity." In addition, "cgerial iexperience" signifn "itly impacmehin "cgerial -to-cgerial iinteractivity." This indicates that online environment provides participapacmwith a fun and exciting environment. In that sense, enhancing the online brand community experiencemwould be a critical factor for building strong brand. Thi", mword of mouth can play a riclly important role in making many cgerial s to trust brand and to enhance online brand community loyalty. Web users are becoming web authoore owning and creating content limited only by their imaginations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.