• 제목/요약/키워드: one-cutting method

검색결과 340건 처리시간 0.032초

직교배열법에 의한 선삭가공시 표면거칠기 평가 (Surface roughness evaluation in turning by an orthogonal array method)

  • 배병중;박태준;양승한;이영문;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.862-865
    • /
    • 2000
  • The object of this paper is to evaluate the surface roughness using the experimental equation of surface roughness, which is developed in turning by an orthogonal array method. $L_9{3^4}$ orthogonal array method, one of fractional factorial design has been used to study effects of main cutting parameters such as cutting speed, feed rate and depth of cut, on the surface roughness. And the analysis of variance (ANOVA)-test has been used to check the significance of cutting parameters. Using the result of ANOVA-test, the experimental equation of surface roughness, which consists of only significant cutting parameter - feed rate, has been developed. The coefficient of determination of this equation is 0.962.

  • PDF

임펠러의 효율적인 5축 NC 황삭가공에 관한 연구 (A Study on Efficient Roughing of Impeller with 5-Axis NC Machine)

  • 조환영;장동규;이희관;양균의
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1917-1924
    • /
    • 2003
  • This paper proposes a roughing path generation method fer machining impeller with 5-axis machining center. Traditional researches are focus on finishing for machining impeller. To achieve efficient machining, roughing method must be studied. The proposed method consists two steps : One is to select optimal tool size and tool attitude by dividing cutting area into two regions to reduce cutting time. The regions are automatically divided by character point on the geometry of impeller blade. After dividing, the tool of the optimal size is selected for each divided region. The other is avoidance of tool interference. Tool interference in cutting areas is avoided by checking the distance between tool axis vector and ruling line on blade surface or approximated plan between ruling line. Using this method, the cutting time is reduced efficiently.

GNSS 기반 PHC 파일 절단위치 센싱 방법론에 관한 연구 (GNSS-Based PHC Pile Cutting Position Sensing Methodology)

  • 조세현;유건희;김준상;이준호;허제;김영석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.387-388
    • /
    • 2023
  • PHC pile head cutting is an essential work in pile foundation construction. However, since the work has labor-intensive characteristics, there are problems such as productivity and safety. So in previous study PHC pile one-cutting head cutting automation equipment was developed to solve this problem. However, it has been investigated as a limitation that checking the cutting position of the PHC pile can be challenging in place where a rotary laser leveler cannot irradiate cutting position, as the sensing unit of the developed automated equipment utilizes an optical method. Therefore, the objective of this study is to delvelop a GNSS-based methodology for sensing the cutting position of PHC piles to overcome the limitations of the optical method and to examine its feasibility for field application. If the proposed methodology is applied to the construction site, it is expected that the convenience and productivity of the PHC pile cutting position sensing work will be improved.

  • PDF

신경회로망과 실험계획법을 이용한 칩형상 예측 (Prediction of Chip Forms using Neural Network and Experimental Design Method)

  • 한성종;최진필;이상조
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

청정 절삭 가공을 위한 절삭유제의 선택 (Selection of Cutting Fluids for Environmentally Clean Machining)

  • 장윤상
    • 청정기술
    • /
    • 제2권2호
    • /
    • pp.165-175
    • /
    • 1996
  • 절삭가공 공정에 있어서 절삭유제는 환경영향이 가장 큰 요인들 중의 하나이다. 현재의 기술수준에서 환경영향을 줄이기 위한 공정개선의 방법으로 유제의 환경부하에 대한 평가 및 저부하 유제로의 사용대체가 있다. 본 논문에서는 기존의 절삭성을 바탕으로한 절삭유제의 선택방법과 환경영향을 고려한 선택방법을 비교하여 절삭유제의 선택기준을 제시하고 환경부하의 평가방법으로 AMP 방법을 소개한다. 중절삭이며 저속가공인 드릴링가공을 통하여 절삭성과 환경영향을 함께 고려한 절삭유제의 선택과정을 예시한다. 절삭가공의 물질수지를 고려하여 다섯가지의 환경영향의 평가요소를 선정하고 한국공업규격의 다섯가지의 절삭유제를 비교한다. 비수용성 절삭유제가 성능 뿐만 아니라 환경적인 면에서도 수용성 유제에 비하여 우수한 결과를 보여주었다.

  • PDF

엔드밀링에서의 동절삭력 모델을 이용한 채터예측 (Chatter Prediction in Endmilling Using Dynamic Cutting Force Modeling)

  • 황철현;조동우
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.104-115
    • /
    • 1999
  • Cutting process, in general, is a closed-loop system consisting of structural dynamics and cutting dynamics, with the cutting forces and the relative displacements between tool and workpiece being the associated variables. There have been a number of works on modeling the cutting process of endmilling, most of which assumed that either one of the tool or workpiece be negligible in tis displacement. In this paper, the relative displacement between tool and workpiece was considered. The proposed model used experimental modal analysis for structural dynamics and an instantaneous uncut chip thickness model for cutting dynamics. Simulation of the model, a time varying cutting system, was performed using 4th order Runge-Kutta method. Subsequent simulation results were utilized to predict chatter over a variety of experiments in slotting operation, showing good agreement.

  • PDF

향상된 절삭력 예측을 위한 Size Effect 모델의 개발 (Development of the Size Effect Model for More Accurate Cutting Force Prediction)

  • 윤원수;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.995-1000
    • /
    • 2000
  • In this paper. a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip th thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters. the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.

  • PDF

복합가능형 절삭상태인식용 In-Process Sensor에 관한 연구 (A Study on In-Porcess Sensor for Recognizing Cutting Conditions)

  • 정의식;김영대;남궁석
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.47-57
    • /
    • 1990
  • In-process recognition of the cutting states is one of the very important technologies to increase the reliability of mordern machining process. In this study, practical methods which use the dynamic component of the cutting force are proposed to recognize cutting states (i.e. chip formation, tool wear, surface roughness) in turning process. The signal processing method developed in this study is efficient to measure the maximum amplitude of the dynamic component of cutting force which is closely related to the chip breaking (cut-off frequency : 80-500 Hz) and the approximately natural frequency of cutting tool (5, 000-8, 000 Hz). It can be clarified that the monitoring of the maximum apmlitude in the dynamic component of the cutting force enables the state of chip formation which chips can be easily hancled and the inferiority state of the machined surface to be recognized. The microcomputer in-process tool wear monitor- ing system introduced in this paper can detect the determination of the time to change cutting tool.

  • PDF

SM25C 재질의 엔드밀 가공을 위한 개선된 절삭파라미터 선정 (The Improved Cutting Parameter Design of End-milling for SM25C Material)

  • 임성훈;김경환
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we selected primary cutting parameters that influence on surface roughness of cut bottom surface in end-milling for SM25C material. Those are overhang, depth of cut, feed rate and spindle speed. And then performed orthogonal array experiment and ANOVA by Taguchi method to determine that improved level combination of cutting parameters for betterment of working efficiency and surface roughness one of quality characteristics. And we verified a advisability of prediction model by verification test about level combination. From the results, main cutting parameter influences on surface roughness is spindle speed and the next is feed rate.

A study on pressurizer cutting scenario for radiation dose reduction for workers using VISIPLAN

  • Lee, Hak Yun;Kim, Sun Il;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2736-2747
    • /
    • 2022
  • The operations in the design lifecycle of a nuclear power plant targeted to be decommissioned lead to neutron activation. Operations in the decommissioning process include cutting, decontamination, disposal, and processing. Among these, cutting is done close to the target material, and thus workers are exposed to radiation. As there are only a few studies on pressurizers, there arises the need for further research to assess the radiation exposure dose. This study obtained the specifications of the AP1000 pressurizer of Westinghouse and the distribution of radionuclide inventory of a pressurizer in a pressurised water reactor for evaluation based on literature studies. A cutting scenario was created to develop an optimal method so that the cut pieces fill a radioactive solid waste drum with dimensions 0.571 m × 0.834 m. The estimated exposure dose, estimated using the tool VISIPLAN SW, in terms of the decontamination factor (DF) ranged from DF-0 to DF-100, indicating that DF-90 and DF-100 meet the ICRP recommendation on exposure dose 0.0057 mSv/h. At the end of the study, although flame cutting was considered the most efficient method in terms of cutting speed, laser cutting was the most reasonable one in terms of the financial aspects and secondary waste.