• Title/Summary/Keyword: on-state resistance

Search Result 1,160, Processing Time 0.045 seconds

An Experimental Study on the Fludity of High Flowing Concrete according to the Fineness Modulus of Fine Aggregate (세골재의 조립율에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • 박유신;강석표;조성현;최세진;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In the mixing proportion of high flowing concrete we have to use quantity of power such as cement and superplasticizer, and increase the proportion of fine aggregate more than that of plain concrete to increase flowability and segregation resistance. Therefore, the fresh state of high flowing concrete is largely affected by superplasticizer and change of grade the percentage of surface water. This study aims at development of self-filling up high flowing concrete without compaction, in case of using the fine aggregate of standard grade range, by examination on the influence of fresh state of high flowing concrete, and by understanding influence on various fluidity such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

Analysis of The Electrical Characteristics of Power MOSFET with Floating Island (플로팅 아일랜드 구조의 전력 MOSFET의 전기적 특성 분석)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.199-204
    • /
    • 2016
  • This paper was proposed floating island power MOSFET for lowering on state resistance and the proposed device was maintained 600 V breakdown voltage. The electrical field distribution of floating island power MOSFET was dispersed to floating island between P-base and N-drift. Therefore, we designed higher doping concentration of drift region than doping concentration of planar type power MOSFET. And so we obtain the lower on resistance than on resistance of planar type power MOSFET. We needed the higher doping concentration of floating island than doping concentration of drift region and needed width and depth of floating island for formation of floating island region. We obtained the optimal parameters. The depth of floating island was $32{\mu}m$. The doping concentration of floating island was $5{\times}1,012cm^2$. And the width of floating island was $3{\mu}m$. As a result of designing the floating island power MOSFET, we obtained 723 V breakdown voltage and $0.108{\Omega}cm^2$ on resistance. When we compared to planar power MOSFET, the on resistance was lowered 24.5% than its of planar power MOSFET. The proposed device will be used to electrical vehicle and renewable industry.

Effects of Corrosion Resistance Characteristics of Opponent Materials in relative Motion on Sliding Wear Behavior of Mild Carbon Steel (상대재 내식성이 철강재료의 미끄럼마모 특성에 미치는 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • This study investigates the effects of corrosion resistance characteristics of opponent materials in relative motion on the sliding wear behavior of mild carbon steel. Pin specimens made of mild carbon steel are tested at several sliding speeds against mating discs made of two types of alloyed steels, such as type D2 tool steel (STD11) and type 420 stainless steel (STS420J2), with different corrosion resistance characteristics in a pin-on-disc type sliding wear test machine. The results clearly show that the sliding wear behavior of mild carbon steel is influenced by the corrosion resistance characteristics of the mating disc materials at low sliding speeds. However, the sliding wear behavior at high sliding speeds is irrelevant to the characteristics because of the rising temperature. During the steady state wear period, the sliding wear rate of mild carbon steel against the type 420 stainless steel at a sliding speed of 0.5 m/s increases considerably unlike against the type D2 tool steel. This may be because the better corrosion resistance characteristics achieve a worse tribochemical reactivity. However, during the running-in wear period at low sliding speeds, the wear behavior of mild carbon steel is influenced by the microstructure after heat treatment of the mating disc materials rather than by their corrosion resistance characteristics.

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

Formation Behavior of Passive State Film on Stainless Steel for Metallic Ion Concentration in Electropolishing Solution (전해 연마액 금속 이온 농도에 따른 스테인리스 스틸의 부동태 피막 형성 거동)

  • Oh, Jong Su;Kang, Eun-Young;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.

Excitatory Influences of Noradrenaline on the Spontaneous Contractions and Electrical Activity of Antral Circular Muscle of the Guinea-pig Stomach

  • Lee, Taik-Jong;Kim, Jin-Hwan;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.147-158
    • /
    • 1991
  • The effects of noradrenaline on the spontaneous contraction recorded from a strip of mucosa-free antral circular muscle were studied in the guinea-pig stomach, and the changes in slow waves and membrane resistance were analyzed in order to elucidate the mechanism for the excitatory response to noradrenaline. Electrical responses of circular muscle cells were recorded using glass microelectrodes filled with 3 M KCI. Electrotonic potentials were produced to estimate membrane resistance by the partition stimulating method. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) The spontaneous contractions were potentiated dose-dependently by the application of noradrenaline. 2) Through the experiments using adrenoceptor-blockers, the strong excitatory effect via $[\alpha}-adrenoceptors$ and the weak inhibitory efffect via ${\beta}-adrenoceptors$ were noted. 3) Noradrenaline produced hyperpolarization of membrane potential, and increases in the amplitude and the maximum rate of rise of slow waves. 4) In the presence of apamin, Ca-dependent K channel blocker, the characteristic hyperpolarization was not developed. However, the excitatory effect of noradrenaline on spontaneous contraction remained. 5) Membrane resistance was reduced during the hyperpolarized state by the application of noradrenaline, and the change of membrane resistance and the hyperpolarized state were completely abolished by apamin. From the above results, following conclusions could be made: Excitatory responses to noradrenaline result from the dominant ${\alpha}-excitatory$, and the weak ${\beta}-inhibitory$ action of noradrenaline. Hyperpolarization of membrane potential by noradrenaline is due to the activation of Ca-dependent K channel.

  • PDF

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

Experimental study on analysis of correlation between void fraction and drag reduction rate in air lubrication ship (공기윤활선 모사 실험에서의 공극률 및 마찰저항저감율 상관성 분석을 위한 실험적 연구)

  • Park, Seungchan;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • The reduction of CO2 emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Since the air lubrication pattern varies according to the ship's standing position and injection flow rate, in order to effectively control the air lubrication system, it is necessary to be able to judge the air layer development state based on the information collected from the monitoring sensor. In this study, we performed the air lubrication ship simulation experiment to measure the void fraction and the frictional resistance. The void fraction was measured to confirm the behavior of the air. Through the measurement of the frictional resistance, the change in frictional resistance reduction rate from the injection point to the longitudinal direction of the ship was confirmed. Based on the measurement results, correlation analysis was performed on void fraction and frictional resistance reduction rate.

Fabrication and Characteristics of the Controlled Inversion Devices (제어 반전 소자의 제조 및 그 특성)

  • 김진섭;이우일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • The four-layered(metal/insulator/n epi-layer/p+) controlled inversion devices have been fabricated. The I-V curve showed two characteristic states―an On state and an OFF state which were separated by a negative resistance region. The switching voltage and the holding voltage were about 5.0V and 2.5V, respectively. The switching voltage of the device was decreased by photo illumination while the holding voltage remained unaffected.

  • PDF

Decay Resistance of Borate-Modified Oriented Strandboard: A Comparison of Zinc and Calcium Borate

  • Lee, Sun-Young;WU, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Decay and mold resistance of zinc borate (ZB) and calcium borate (CB) modified oriented strandboard (OSB) from southern mixed hardwood and southern yellow pine was investigated in this study. Brown rot fungus Gloeophyllum trabeum and white-rot fungus Trametes versicolar were used to examine the decay resistance of the OSB. The OSB test specimens were colonized by brown and white rot fungal mycelium in both the brown and white-rot culture bottles after 8 and 12 weeks, respectively. The wood species and fungus type had the significant effects on the decay resistance. Brown rot decay was evident for all untreated southern pine and mixed hardwood controls. The white-rot decay, however, did not show significant weight loss at both species control samples. The incorporation of ZB and CB composites provides suitable protection against brown-and white-rot fungi. No significant weight loss was observed from the borate treated OSB.