• Title/Summary/Keyword: on-site power supply

Search Result 78, Processing Time 0.041 seconds

Development of a Vibration Diagnostic System for Steam Turbine Generators (스팀터빈 발전기 진동진단 시스템 개발)

  • Lee, An-Sung;Hong, Seong-Wook;Kim, Ho-Jong;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.543-553
    • /
    • 1995
  • Modern steam turbine generators are being built as a higher power and larger system, experiencing more frequent starts and stops of operation due to a constant change of power demands. Hence, they are inevitably more vulnerable to various vibrations, and more often exposed to the danger of sudden vibration accidents than ever before. Even under the circumstances, in order to secure the system reliability of steampower plants and there by to supply safely the public electricity, it is important to prevent a sudden vibration accident in one hand and even when it happens, to raise an operating efficiency of the plants throught swift and precise treatments in the other. In this study, an interactive vibration diagnostic system has been developed to make the on-site vibration diagnosis of steam turbine generators possible and convenient, utilizing a note-book PC. For this purpose, at first the principal vibration phenomena, such as various unbalance and unstable vibrations as well as rubbing, misalignment, and shaft crack vibrations, have been systematically classified as grouped parameters of vibration frequencies, amplitudes, phases, rotating speeds at the time of accident, and operating conditions or condition changes. A new complex vibration diagnostic table has been constructed from the causal relations between the characteristic parameters and the principal vibration phenomena. Then, the diagnostic system has been developed to screen and issue the corresponding vibration phenomena by assigning to each user-selected combination of characteristic parameters a unique characteristic vector and comparing this vector with a diagnostic vector of each vibration phenomenon based on the constructed diagnostic table. Moreover, the diagnostic system has a logic whose diagnosis may be performed successfully by inputing only some of the corresponding characteristic parameters without having to input all the parameters. The developed diagnostic system has been applied to perform the diagnosis of several real cases of steam turbine vibration accidents. And the results have been quite satisfactory.

  • PDF

A Study on the Landscape Cognition of Wind Power Plant in Social Media (소셜미디어에 나타난 풍력발전시설의 경관 인식 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.69-79
    • /
    • 2022
  • This study aims to assess the current understanding of the landscape of wind power facilities as renewable energy sources that supply sightseeing, tourism, and other opportunities. Therefore, social media data related to the landscape of wind power facilities experienced by visitors from different regions was analyzed. The analysis results showed that the common characteristics of the landscape of wind power facilities are based on the scale of wind power facilities, the distance between overlook points of wind power facilities, the visual openness of the wind power facilities from the overlook points, and the terrain where the wind power facilities are located. In addition, the preference for wind power facilities is higher in places where the shape of wind power facilities and the surrounding landscape can be clearly seen- flat ground or the sea are considered better landscapes. Negative keywords about the landscape appear on Gade Mountain in Taibai, Meifeng Mountain in Taibai, Taiqi Mountain, and Gyeongju Wind Power Generation Facilities on Gyeongshang Road in Gangwon. The keyword 'negation' occurs when looking at wind power facilities at close range. Because of the high angle of the view, viewers can feel overwhelmed seeing the size of the facility and the ridge simultaneously, feeling psychological pressure. On the contrary, positive landscape adjectives are obtained from wind power facilities on flat ground or the sea. Visitors think that the visual volume of the landscape is fully ensured on flat ground or the sea, and it is a symbolic element that can represent the site. This study analyzes landscape awareness based on the opinions of visitors who have experienced wind power facilities. However, wind power facilities are built in different areas. Therefore, landscape characteristics are different, and there are many variables, such as viewpoints and observers, so the research results are difficult to popularize and have limitations. In recent years, landscape damage due to the construction of wind power facilities has become a hot issue, and the domestic methods of landscape evaluation of wind power facilities are unsatisfactory. Therefore, when evaluating the landscape of wind power facilities, the scale of wind power facilities, the inherent natural characteristics of the area where wind power facilities are set up, and the distance between wind power facilities and overlook points are important elements to consider. In addition, wind power facilities are set in the natural environment, which needs to be protected. Therefore, from the landscape perspective, it is necessary to study the landscape of wind power facilities and the surrounding environment.

Study for Flow Phenomenon in the Circulation Water Pump Chamber using the Flow-3D Model (Flow-3D 모형을 이용한 순환수취수펌프장 내 흐름현상 연구)

  • Ha, Sung-Won;Kim, Tae-Won;Choi, Joo-Hwan;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.580-589
    • /
    • 2019
  • Indonesia has a very short supply of electricity. As a solution to this problem, plans for construction of thermal power plants are increasing. Thermal power plant require the cooling water system to cool the overheated engine and equipment that accompany power generation, and the circulation water pump chamber among the cooling water system are generally designed according to the ANSI (1998) standard. In this study, the design criterion $20^{\circ}$ for the spreading angle of the ANSI (1998) of the layout of the circulating water pump chamber can not be satisfied on the K-coal thermal power plant site condition in Indonesia. Therefore, 3-D numerical model experiment was carried out to obtain a hydraulically stable flow and stable structure. The Flow-3D model was used as numerical model. In order to examine the applicability of the Flow-3D model, the flow study results around the rectangular structure of Rodi (1997) and the numerical analysis results were compared around the rectangular structures. The longitudinal velocity distribution derived from numerical analysis show good agreement. In order to satisfy the design velocity in the circulating water pump chamber, a rectangular baffle favoring velocity reduction was applied. When the approach velocity into the circulating water pump chamber was occurred 1.5 m/s ~ 2.5 m/s, the angle of the separation flow on the baffle was occurred about $15^{\circ}{\sim}20^{\circ}$. By placing the baffle below the separation flow angle downstream, the design velocity of less than 0.5 m/s was satisfied at inlet bay.

A Study on Actual Conditions of Industrial Safety Regulations - Based on Petrochemical Plant - (산업현장에서의 안전규제 적용실태 연구 - 석유화학공장을 중심으로 -)

  • Oh, Hyeong-Geun;Baek, Dong-Seung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Without a special mineral resources in Korea, such as petrochemical industries, electronics and automotive industries to supply the basic material, but remains a key industry locations. Gongjeongsang dealing with hazardous materials, such as a fire or explosion hazard, and from this site sangjonhae safety regulations to protect human and material disaster prevention activities are focused. However, depending on the actual implementation of standardized safety regulations as necessary if not originally intended, proper objectivity and reliability of safety regulations, as well as impaired resulting in a waste of public and private administrative power and petrochemical industries and the competitiveness of the entire drop factor will. Accordingly, this study petrochemical plant is applied to a representative safety regulations, items for their safety are needed and these regulations as being implemented that was identified, according to a study, some of the need for regulation and implementation both in terms of reliability was low.

Aerodynamic Retrofit of Bridge and Energy Harvesting by Small Wind Turbines (소형 풍력발전기를 이용한 교량의 공력성능 개선 및 에너지 생산)

  • Kwon, Soon-Duck;Lee, Seongho;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.27-33
    • /
    • 2010
  • This study addresses a methodology to use small wind turbines for dual purposes, improving aerodynamic performance of flexible bridges and wind energy harvesting. A way to proper placement of small wind turbines on flexible bridges were proposed according on the analogy of conventional aerodynamic appendages. From the wind tunnel tests, it was found that the wind turbine attached like fairing was effective to reduce the vortex-induced vibration of bridge and the optimal spanwise interval of the wind turbine was 3-4.5 time of turbine diameter. Moreover the aerodynamic coefficients of the bridge were improved after installation of the wind turbines. Present results showed the general availability of wind turbine for improvement of aerodynamic performance and energy supply of flexible bridges although the capacity of wind power generation was strongly dependent on wind characteristics of the bridge site.

A Study on the Fire Prevention Activities and Suppression Measures of Utility-Pipe Conduit (지하공동구 화재예방활동 및 진압대책에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • Utility-Pipe Conduit is, Housing and city effectively accommodate what they absolutely need power, communications, gas, pipeline, water supply, drainage, energy facilities etc, according to expansion of urban infrastructure are derived, several ways to solve problems in, collection facilities in place are maintained and managed facility. If Utility-Pipe Conduit is damaged, as well as national security, because their impact on society as a whole, by introducing large vulnerability in the fire prevention activities and suppression measures and disaster for our situation by introducing measures, comprehensive analysis of the fire risk, it shall establish fire prevention activities and suppression through analysis of Utility-Pipe Conduit design, institutional issues, the problem of fire protection facilities, fire spread phenomenon etc. Because of Utility-Pipe Conduit is an enclosed place, so incomplete combustion due to lack of oxygen supply that there are problem such dark smoke, carbon monoxide etc, toxic combustion products and heat generation and visual impairment is an issue difficult to enter. As well as fire prevention activities, the fire In light of the particularity of the under ground than above ground fire, so this phenomenon is weak fire fighting that fire to become effective fire fighting tactics, basically it is necessary difficulty softening, non-burn softening and prevent combustion expansion of the cable is installed on the Utility-Pipe Conduit, having to considering the specificity of the response command system and relevant organizations to establish an on-site, Structural identification and other information gathering required to record of Response agencies, keep air conditioning system 24 hours and strengthening Virtual Total Training of Response agen

A Study on Construction and Applicability on of Smart Pole Measuring System for Monitoring Steep Slope Sites (급경사지 모니터링을 위한 스마트폴 계측시스템 구축 및 적용성 연구)

  • Lee, Jin-Duk;Chang, Ki-Tae;Bhang, Kon-Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Smart Pole Measurement System was constructed with not only the core sensors of a GNSS receiver, a TRS sensor and a soil moisture sensor but supplementary installation of power supply and radio communication for monitoring steep slope sites. Also a data processing software for displacement extraction and visualization was developed. Smart Pole Measurement sensor is composed of a GNSS antenna at the top of the pole, a TRS sensor and a gyro sensor vertical below right of the antenna and a soil moisture sensor at the bottom of the pole. The sensor combination extracts not only ground combination in real time but transltion, slide, settlement and soil moisture content. This measuring/monitoring system which cosists of data receiving part, data collection/transfer part and data processing part was built to exercise their functions and then test measuring/monitoring was conducted by introducing artificial displacement and the results were analyzed to evaluate field applicability.

A Performance Measurement and Evaluation of a 400RT Vertical type Geothermal System installed in a Complex Building Before Occupancy (복합용도 건물에 적용된 400RT급 수직형 지열시스템의 입주전 성능평가)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Joong-Hun;Shin, Seung-Ho;Jung, Myoung-Kwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.7-14
    • /
    • 2008
  • 400RT geothermal system which is the biggest capacity among on-operations at present in Korea is measured and evaluated on 23rd${\sim}$26th Jan. 2008 during those days building is not allowed owners and/or tenants to move in. The geothermal system is consist with vertical-typed 112 geothermal heat exchangers which are installed circle-like 1 row with 4m interval, and has 16 units of 25USRT geothermal-source heat pump(GSHP)s. And each 5 units of circulation pump are running for geothermal heat exchangers and hot water supplies. The followings are the results. The temperatures at G.L. -70m of 2 boreholes are varied quite similarly. The average temperature difference between inlet and outlet of geothermal pipes is $4.1^{\circ}C$, and that of hot water supply is $3.2^{\circ}C$, of Zone 3's each 4 GSHPs when being operated. Despite temperature fluctuations by heating loads, the average temperature difference between main pipes of inlet and outlet of geothermal heat exchangers is measured as $4.1^{\circ}C$. This study propose "Geothermal System COP" which includes not only consumed electric power by compressor but also circulation pumps and auxiliary utilities. By comparing the geothermal system COP with GSHP's performance specification, it is clear that the performances of GHSPs of this site are satisfied with the specification.

Analysis of Earthquake Countermeasure for Electrical Facility Building on Domestic and Foreign (국내외 건축물에 시설되는 수변전설비 지진 대책에 관한 조사 분석)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Bae, Suk-Myong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.150-156
    • /
    • 2008
  • Recently life and properties damage at Japan and China by generating earthquake. For establishing measure for earthquake in domestic, earthquake disaster measure law was enacted on March, 2008 from a natural disaster of earthquake and present the detail part and enforce the measures. This paper analyzes domestic site and problems of electrical facility earthquake measures at transformer vault which the power supply the emergence situation at generating earthquake. Also we present the domestic seismic design and construction direction from research and analysis related law and regulation for the seismic design and construction in domestic and foreign for electrical facility. Afterward we will need to study reliability inspection for electrical facility seismic design method and construction at buildings transformer vault.

A Design and Implementation of Mobile Logistics Information System (모바일 물류정보시스템 설계 및 구현)

  • Lee, Won-Joo;Lee, Sang-Jun;Lim, Heon-Yong;Kim, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.139-146
    • /
    • 2012
  • In this paper, we implement an m-LIS(Mobile-Logistics Information System) for an effective logistics management in consideration of logistics process and work environment. The m-LIS could perform the entire business process every minute and promote the work efficiency by tying up with ERP and POS system. Moreover, this system could enhance the management level of service and supply chain. Due to the reason that the existing logistics business was not computerized and automated, most of operation was accomplished by means of workers experience and convention. This problem brought about both the ineffective management and logistics quality deterioration by weakening the control power of the logistics site. In order to solve this problem, we put focus on providing the real-time operation monitoring environment on the spot, the satisfaction of the efficiency on the spot, and the optimized system by building up the logistics information system. Furthermore, we attest that the new logistics system could properly cope with the increase of the quantity of goods transported owing to stable logistics information support and the market expansion and growth caused by the firm interface between the new ERP and its related system.