The ex-post evaluation of governmental crisis management is an important issues since it is necessary to prepare for the future disasters and becomes the cornerstone of our success as well. In this paper, we propose a data cube model with data mining techniques for the analysis of governmental crisis management strategies and ripple effects of foot-and-mouth(FMD) disease using the online news articles. Based on the construction of the data cube model, a multidimensional FMD analysis is performed using on line analytical processing operations (OLAP) to assess the temporal perspectives of the spread of the disease with varying levels of abstraction. Furthermore, the proposed analysis model provides useful information that generates the causal relationship between crisis response actions and its social ripple effects of FMD outbreaks by applying association rule mining. We confirmed the feasibility and applicability of the proposed FMD analysis model by implementing and applying an analysis system to FMD outbreaks from July 2010 to December 2011 in South Korea.
According to the changing environment of management, the concept of the one-to-one marketing is appeared in the environment of management by high Quality that customers needs. In this paradigm, CRM(Customer Relationship Management) offering integrated multiple view points is able to be executed by the advance of Information Technology (IT). In this study, the environment and the management status of the steel company that CRM implemented is analyzed. This study presents the system architecture which applies OLAP(on-line analytical processing), web technologies, and logistics service. Then this research presents a variety of effects and development direction in the future.
Ok Geun-Hyoung;Lee Dong-Wook;You Byeong-Seob;Bae Hae-Young
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.35-38
/
2006
데이터 웨어하우스에서는 OLAP(On-Line Analytical Processing) 연산을 제공하기 위해 다차원 데이터를 큐브의 형태로 관리한다. 특히, 공간 차원과 같이 데이터 큐브의 차원에 개념 계층이 존재하는 경우 사용자는 특정 계층에 대한 집계 결과를 요구한다. 기조의 데이터 큐브의 구조들은 차원의 개념 계층을 지원하지 못하거나 지원하더라도 시간이나 공간적 비용에 대해 비효율적이다. 본 논문에서는 공간 데이터 웨어하우스에서 공간 개념 계층을 이용하여 효율적인 계층별 영역 집계연산을 지원하는 공간 데이터 큐브를 제안한다. 이는 개념 계층을 DAG(Directed Acyclic Graph) 형태로 표현하여 구성된 여러 개의 차원들을 공간차원의 지역성을 기준으로 연결한 구조이다. 이러한 구조를 갖는 큐브를 이용하면, 데이터 검색 시 상위 계층부터 아래 방향으로 탐색하기 때문에 각 차원에 대한 효율적인 검색이 가능하다. 특히, 공간 개념 계층에 대한 DAG를 이용하면, 공간적 지역성에 따른 영역 검색을 지원할 수 있다. 성능평가에서 개념 계층이 적용된 질의에 대한 실험을 통해 제안 기법이 기존 기법들에 비해 저장 공간 효율성 및 질의 응답 성능이 우수함을 증명한다.
To analyze multidimensional data conveniently and efficiently, OLAP (On-Line Analytical Processing) systems or e-business are widely using views in a horizontal form to represent measurement values over multiple dimensions. These views can be stored as materialized views derived from several sources in order to support accesses to the integrated data. The horizontal views can provide effective accesses to complex queries of OLAP or e-business. However, we have a problem of occurring maintenance of the horizontal views since data sources are distributed over remote sites. We need a method that propagates the changes of source tables to the corresponding horizontal views. In this paper, we address incremental maintenance of horizontal views that makes it possible to reflect the changes of source tables efficiently. We first propose an overall framework that processes queries over horizontal views transformed from source tables in a vertical form. Under the proposed framework, we propagate the change of vertical tables to the corresponding horizontal views. In order to execute this view maintenance process efficiently, we keep every change of vertical tables in a differential file and then modify the horizontal views with the differential file. Because the differential file is represented as a vertical form, its tuples should be converted to those in a horizontal form to apply them to the out-of-date horizontal view. With this mechanism, horizontal views can be efficiently refreshed with the changes in a differential file without accessing source tables. Experimental results show that the proposed method improves average performance by 1.2$\sim$5.0 times over the existing methods.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.11
/
pp.1910-1915
/
2008
The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).
As the number of legacy database systems and the size of data to manipulate have been vastly increased, it has become more difficult and complex to analyze characteristics of data. To improve the efficiency of data analysis and help administrators to make decisions in business life, BI(Business Intelligence) system is used. To construct data warehouse and cube from legacy database systems makes it easy and fast to transform raw data into integrated and categorized meaningful information. In this paper, we built a BI system for an University administration. Several source system databases were integrated to data warehouse to build data cubes. The implemented BI system shows much faster data analysis and reporting ability than the manipulation in legacy systems. It is especially efficient in multi dimensional data analysis, nonetheless in single dimensional analysis.
The On-Line Analytical Processing (OLAP) tools access data from the data warehouse for complex data analysis, such as multidimensional data analysis, and decision support activities. Current research has lead to new developments in all aspects of data warehousing, however, there are still a number of problems that need to be solved for making data warehousing effective. View maintenance, one of them, is to maintain view in response to updates in source data. Keeping the view consistent with updates to the base relations, however, can be expensive, since it may involve querying external sources where the base relations reside. In order to reduce maintenance costs, it is possible to maintain the views using information that is strictly local to the data warehouse. This process is usually referred to as "self-maintenance of views". A number of algorithm have been proposed for self maintenance of views where they keep some additional information in data warehouse in the form of auxiliary views. But those algorithms did not consider a consistency of materialized views using view self-maintenance. The purpose of this paper is to research consistency problem when self-maintenance of views is implemented. The proposed "conveyor algorithm" will resolved a complete consistency of materialized view using self-maintenance with considering network delay. The rationale for conveyor algorithm and performance characteristics are described in detail.
Spatial data warehouses provide analytical information for decision supports using SOLAP (Spatial On-Line Analytical Processing) operations. Many researches have been studied to reduce analysis cost of SOLAP operations using pre-aggregation methods. These methods use the index composed of fixed size nodes for supporting the concept hierarchy. Therefore, these methods have many unused entries in sparse data area. Also, it is impossible to support the concept hierarchy in dense data area. In this paper, we propose a dynamic pre-aggregation index method based on the spatial hierarchy. The proposed method uses the level of the index for supporting the concept hierarchy. In sparse data area, if sibling nodes have a few used entries, those entries are integrated in a node and the parent entries share the node. In dense data area, if a node has many objects, the node is connected with linked list of several nodes and data is stored in linked nodes. Therefore, the proposed method saves the space of unused entries by integrating nodes. Moreover it can support the concept hierarchy because a node is not divided by linked nodes. Experimental result shows that the proposed method saves both space and aggregation search cost with the similar building cost of other methods.
For effective analyses in various business applications, OLAP(On-Line Analytical Processing) systems represent the multidimensional data as the horizontal format of tables whose columns are corresponding to values of dimension attributes. Because the traditional RDBMSs have the limitation on the maximum number of attributes in table columns(MS SQLServer and Oracle permit each table to have up to 1,024 columns), horizontal tables cannot be directly stored into relational database systems. In this paper, we propose various efficient optimization strategies in transforming horizontal queries to equivalent vertical queries. To achieve this goral, we first store a horizontal table using an equivalent vertical table, and then develop various query transformation rules for horizontal table queries using the PIVOT operator. In particular, we propose various alternative query transformation rules for the basic relational operators, selection, projection, and join. Here, we note that the transformed queries can be executed in several ways, and their execution times will differ from each other. Thus, we propose various optimization strategies that transform the horizontal queries to the equivalent vertical queries when using the PIVOT operator. Finally, we evaluate these methods through extensive experiments and identify the optimal transformation strategy when using the PIVOT operator.
Kim, Tae-Kyung;Oh, Jeong-Su;Ko, Gun-Hwan;Cho, Wan-Sup;Hou, Bo-Kyeng;Lee, Sang-Hyuk
Interdisciplinary Bio Central
/
v.3
no.2
/
pp.7.1-7.6
/
2011
Background: Published manuscripts are the main source of biological knowledge. Since the manual examination is almost impossible due to the huge volume of literature data (approximately 19 million abstracts in PubMed), intelligent text mining systems are of great utility for knowledge discovery. However, most of current text mining tools have limited applicability because of i) providing abstract-based search rather than sentence-based search, ii) improper use or lack of ontology terms, iii) the design to be used for specific subjects, or iv) slow response time that hampers web services and real time applications. Results: We introduce an advanced text mining system called PubMine that supports intelligent knowledge discovery based on diverse bio-ontologies. PubMine improves query accuracy and flexibility with advanced search capabilities of fuzzy search, wildcard search, proximity search, range search, and the Boolean combinations. Furthermore, PubMine allows users to extract multi-dimensional relationships between genes, diseases, and chemical compounds by using OLAP (On-Line Analytical Processing) techniques. The HUGO gene symbols and the MeSH ontology for diseases, chemical compounds, and anatomy have been included in the current version of PubMine, which is freely available at http://pubmine.kobic.re.kr. Conclusions: PubMine is a unique bio-text mining system that provides flexible searches and analysis of biological entity relationships. We believe that PubMine would serve as a key bioinformatics utility due to its rapid response to enable web services for community and to the flexibility to accommodate general ontology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.