• Title/Summary/Keyword: on-device prediction

Search Result 312, Processing Time 0.032 seconds

Basic study on development of the radon measurement system in groundwater stations for the seismic monitoring and prediction (지진모니터링과 예측을 위한 지하수관측소내 라돈 측정시스템 개발 기초연구)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Lee, Sang Yoon;Oh, Kyung Doo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.507-519
    • /
    • 2020
  • This study developed the radon measurement system that can be used for crustal movement monitoring and seismic occurrence and prediction, and compared and analyzed the results of test-operated radon measurement system and observed seismic occurrence cases. First, the developed radon measurement system consists of an NB-IoT radon measurement device, data center, data analysis, and data supply server. Because the measured radon data can be remotely trasmitted by using NB-IoT, this system is very suitable for installation and operation in unmaaned groundwater station. Second, the developed radon measurement device was test-operated at two groundwater stations in Gimpo from May to July 2019. The measured radon data was compared with the groundwater-level and electrical conductivity measurement data, and it was confirmed that the radon measurement device developed in this study has some potential for commercialization. Finally, from November 2019 to February 2020, three observed seismic cases and daily measured radon, groundwater-level, electrical conductivity data by the NB-IoT radon measurement device installed at three groundwater stations in Pohang, which is a test-bed, were compared and analyzed. As a result of the analysis, it was confirmed that the seismic occurrence correlated with radon, groundwater level, and electrical conductivity and all of these measured data will be able to provide basic data to help in seismic monitoring and prediction in the future.

A Study on the Development of a Noise Reduction Device Installed at the Top of Noise Barrier for the 400 km/h Class High-speed Railroad (400 km/h급 고속철도의 소음저감을 위해 방음벽 상부에 설치하는 소음저감장치 개발에 관한 연구)

  • Yoon, Je-Won;Kim, Young-Chan;Jang, Kang-Seok;Hong, Byung-Kook;Eum, Ki-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.823-830
    • /
    • 2013
  • The purpose of this study is to develop a noise reduction device installed at the top of noise barrier for further decreasing of noise level of 400 km/h class high-speed railroad. For this, the frequency spectrum of 400 km/h class high-speed railroad was analyzed through the field noise test, and the tuning frequency was determined to design a noise reduction device. The noise reduction device was designed to have noise reduction performance of at least 3 dB(A) using the prediction method(2D BEM) and through the laboratory test with the prototype. Finally, the outdoor test showed that this device could decrease noise level of 400 km/h class high-speed railroad even more than 3 dB(A).

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

Severity Prediction of Sleep Respiratory Disease Based on Statistical Analysis Using Machine Learning (머신러닝을 활용한 통계 분석 기반의 수면 호흡 장애 중증도 예측)

  • Jun-Su Kim;Byung-Jae Choi
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2023
  • Currently, polysomnography is essential to diagnose sleep-related breathing disorders. However, there are several disadvantages to polysomnography, such as the requirement for multiple sensors and a long reading time. In this paper, we propose a system for predicting the severity of sleep-related breathing disorders at home utilizing measurable elements in a wearable device. To predict severity, the variables were refined through a three-step variable selection process, and the refined variables were used as inputs into three machine-learning models. As a result of the study, random forest models showed excellent prediction performance throughout. The best performance of the model in terms of F1 scores for the three threshold criteria of 5, 15, and 30 classified as the AHI index was about 87.3%, 90.7%, and 90.8%, respectively, and the maximum performance of the model for the three threshold criteria classified as the RDI index was approx 79.8%, 90.2%, and 90.1%, respectively.

Landslide prediction system by wireless sensor network (무선센서 네트워크를 이용한 산사태 모니터링 기초기술 연구)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.191-195
    • /
    • 2007
  • Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.

  • PDF

Prediction of the transient response of the IGBT using the Spice parameter (Spice parameter를 이용한 IGBT의 과도응답 예측)

  • 이효정;홍신남
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.815-818
    • /
    • 1998
  • The Insulated Gate Bipolar Transistor has the characteristics of MOSFET and BJT. The characteristics of proposed device exhibit high speed switching, the voltage controlled property, and the low ON resistance. This hybrid device has been used and developed continuously in the power electronic engineering field. We can simulate many IGBT circuits, such as the motor drive circuit, the switching circuits etc, with PSpice. However, some problems in PSpice is that the IGBT is old-fashioned and is very difficult to get it. In this paper, the IGBT in PSpice is considered as the basic structure. We changed the valuse of base width, gate-drain overlaping area, device area, and doping concentration, then calculated MOS transconductance, ambipolar recombination lifetime etc. Using this resultant parameter, we could predict the transient response characteristicsof IGBT, for examplex, voltage overshoot, the rising curve of voltage, and the falling curve of current.

  • PDF

Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household (가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현)

  • Lee, JuHui;Lee, KangYoon
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 2021
  • Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.