• 제목/요약/키워드: on-chip detection

검색결과 325건 처리시간 0.02초

A $160{\times}120$ Light-Adaptive CMOS Vision Chip for Edge Detection Based on a Retinal Structure Using a Saturating Resistive Network

  • Kong, Jae-Sung;Kim, Sang-Heon;Sung, Dong-Kyu;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • 제29권1호
    • /
    • pp.59-69
    • /
    • 2007
  • We designed and fabricated a vision chip for edge detection with a $160{\times}120$ pixel array by using 0.35 ${\mu}m$ standard complementary metal-oxide-semiconductor (CMOS) technology. The designed vision chip is based on a retinal structure with a resistive network to improve the speed of operation. To improve the quality of final edge images, we applied a saturating resistive circuit to the resistive network. The light-adaptation mechanism of the edge detection circuit was quantitatively analyzed using a simple model of the saturating resistive element. To verify improvement, we compared the simulation results of the proposed circuit to the results of previous circuits.

  • PDF

Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.379-383
    • /
    • 2005
  • This research aims to develop DNA chip array without an indicator. We fabricated microelectrode array by photolithography technology. Several DNA probes were immobilized on an electrode. Then, indicator-free target DNA was hybridized by an electrical force and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between DNA probe and mismatched DNA in an anodic peak. Immobilization of probe DNA and hybridization of target DNA could be confirmed by fluorescent. This indicator-free DNA chip microarray resulted in the sequence-specific detection of the target DNA quantitatively ranging from $10^{-18}\;M\;to\;10^{-5}$ M in the buffer solution. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩 (A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule)

  • 진영현;조영호
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.

집적화된 Lab-On-a Chip을 위한 광센서의 제작 및 특성 평가 (Development of Photo-sensor for Integrated Lab-On-a-Chip)

  • 김주환;신경식;김용국;김태송;김상식;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.404-409
    • /
    • 2004
  • We fabricated photo-sensor for fluorescence detection in LOC. LOC is high throughput screening system. Our LOC screens biochemical reaction of protein using the immunoassay, and converts biochemical reaction into electrical signal using LIF(Laser Induced Fluorescence) detection method. Protein is labeled with rhodamine intercalating dye and finger PIN photodiode is used as photo-sensor We measured fluorescence emission of rhodamine dye and analyzed tendency of fluorescence detection, according to photo-sensor size, light intensity, and rhodamine concentration. Detection current was almost linearly proportional to two parameters, intensity and concentration, and was inversely proportional to photo-sensor size. Integrated LOC consists of optical-filter deposited photo-sensor and PDMS microchannel detected 50 (pg/${mu}ell$) rhodamine. For integrated LOC including light source, we used green LED as the light source and measured emitted fluorescence.

픽셀의 고정 패턴 잡음을 감소시킨 윤곽 검출용 시각칩 (Vision chip for edge detection with a function of pixel FPN reduction)

  • 서성호;김정환;공재성;신장규
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.191-197
    • /
    • 2005
  • When fabricating a vision chip, we should consider the noise problem, such as the fixed pattern noise(FPN) due to the process variation. In this paper, we propose an edge-detection circuit based on biological retina using the offset-free column readout circuit to reduce the FPN occurring in the photo-detector. The offset-free column readout circuit consists of one source follower, one capacitor and five transmission gates. As a result, it is simpler and smaller than a general correlated double sampling(CDS) circuit. A vision chip for edge detection has been designed and fabricated using $0.35\;{\mu}m$ 2-poly 4-metal CMOS technology, and its output characteristics have been investigated.

Feasibility of On-chip Detection of Endotoxin by LAL Test

  • Lee, Eun-Kyu;Suh, Chang-Woo;Hwang, Sang-Youn;Park, Hyo-Jin;Seong, Gi-Hoon;Ahn, Yoo-Min;Kim, Yang-Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.132-136
    • /
    • 2004
  • The LAL (Limulus amebocyte lysate) test for the detection and quantification of endotoxin is based on the gelation reaction between endotoxin and LAL from a blood extract of Limulus polyphemus. The test is labor intensive, requiring dedicated personnel, a relatively long reaction time (approximately 1 h), relatively large volumes of samples and reagents and the detection of the end-point is rather subjective. To solve these problems, a miniaturized LOC (lab-on-a-chip) prototype, 62mm (L) ${\times}$ 18 mm (W), was fabricated using PDMS (polydimethylsiloxane) bonded to glass. Using this prototype, in which 2mm (W) ${\times}$ 44.3mm (L) ${\times}$ 100 $\mu\textrm{m}$ (D) microfluidic channel was constructed, turbidometric and chromogenic assay detection methods were compared, and the chromogenic method was found the most suitable for a small volume assay. In this assay, the kinetic-point method was more accurate than the end-point method. The PDMS chip thickness was found to be minimized to around 2 mm to allow sufficient light transmittance, which necessitated the use of a glass slide bonding for chip rigidity. Due to this miniaturization, the test time was reduced from 1 h to less than 10 min, and the sample volume could be reduced from 100 to ca. 4.4 ${\mu}$L. In summation, this study suggested that the LOC using the LAL test principle could be an alternative as a semi-automated and reliable method for the detection of endotoxin.

수광 회로와 윤곽 검출 회로의 분리를 통한 윤곽 검출용 시각칩의 해상도 향상 (Resolution improvement of a CMOS vision chip for edge detection by separating photo-sensing and edge detection circuits)

  • 공재성;서성호;김상헌;신장규;이민호
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.112-119
    • /
    • 2006
  • Resolution of an image sensor is very significant parameter to improve. It is hard to improve the resolution of the CMOS vision chip for edge detection based on a biological retina using a resistive network because the vision chip contains additional circuits such as a resistive network and some processing circuits comparing with general image sensors such as CMOS image sensor (CIS). In this paper, we proved the problem of low resolution by separating photo-sensing and signal processing circuits. This type of vision chips occurs a problem of low operation speed because the signal processing circuits should be commonly used in a row of the photo-sensors. The low speed problem of operation was proved by using a reset decoder. A vision chip for edge detection with $128{\times}128$ pixel array has been designed and fabricated by using $0.35{\mu}m$ 2-poly 4-metal CMOS technology. The fabricated chip was integrated with optical lens as a camera system and investigated with real image. By using this chip, we could achieved sufficient edge images for real application.

Performance Estimation of an Implantable Epileptic Seizure Detector with a Low-power On-chip Oscillator

  • Kim, Sunhee;Choi, Yun Seo;Choi, Kanghyun;Lee, Jiseon;Lee, Byung-Uk;Lee, Hyang Woon;Lee, Seungjun
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.169-176
    • /
    • 2015
  • Implantable closed-loop epilepsy controllers require ideally both accurate epileptic seizure detection and low power consumption. On-chip oscillators can be used in implantable devices because they consume less power than other oscillators such as crystal oscillators. In this study, we investigated the tolerable error range of a lower power on-chip oscillator without losing the accuracy of seizure detection. We used 24 ictal and 14 interictal intracranial electroencephalographic segments recorded from epilepsy surgery patients. The performance variations with respect to oscillator frequency errors were estimated in terms of specificity, modified sensitivity, and detection timing difference of seizure onset using Generic Osorio Frei Algorithm. The frequency errors of on-chip oscillators were set at ${\pm}10%$ as the worst case. Our results showed that an oscillator error of ${\pm}10%$ affected both specificity and modified sensitivity by less than 3%. In addition, seizure onsets were detected with errors earlier or later than without errors and the average detection timing difference varied within less than 0.5 s range. The results suggest that on-chip oscillators could be useful for low-power implantable devices without error compensation circuitry requiring significant additional power. These findings could help the design of closed-loop systems with a seizure detector and automated stimulators for intractable epilepsy patients.

Light-Adaptive Vision System for Remote Surveillance Using an Edge Detection Vision Chip

  • Choi, Kyung-Hwa;Jo, Sung-Hyun;Seo, Sang-Ho;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.162-167
    • /
    • 2011
  • In this paper, we propose a vision system using a field programmable gate array(FPGA) and a smart vision chip. The output of the vision chip is varied by illumination conditions. This chip is suitable as a surveillance system in a dynamic environment. However, because the output swing of a smart vision chip is too small to definitely confirm the warning signal with the FPGA, a modification was needed for a reliable signal. The proposed system is based on a transmission control protocol/internet protocol(TCP/IP) that enables monitoring from a remote place. The warning signal indicates that some objects are too near.

pH 검출을 위한 미세유동 폴리디아세틸렌 센서칩 개발 (Development of Microfluidic Polydiacetylene Sensor Chip for pH detection)

  • 황현진;송시몬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2415-2418
    • /
    • 2008
  • Polydiacetylenes (PDAs) are very attractive chemical substances which have distinctive features of color change and fluorescence emission by thermal or chemical stress. Especially, when PDAs contact with solutions of a particular pH, such as a strong alkaline sodium hydroxide (NaOH) solution or a strong acidic hydrogen chloride (HCl) solution, PDAs change their color from non-fluorescent blue to fluorescent red. In this study, we propose a novel method to detect alkaline pH using PDAs and NaOH solutions by hydrodynamic focusing on a microfluidic chip. Preliminary results indicate that the fluorescent intensity of PDAs increases in respond to the NaOH solution concentrations. Also, the fluorescence is quenched back when the PDAs are in contact with a HCl solution. These results are useful in a microfluidic PDA sensor chip design for pH detection.

  • PDF