• Title/Summary/Keyword: oil-degradation

Search Result 405, Processing Time 0.028 seconds

Biodegradation of crude oil hydrocarbons by Acinetobacter sp. isolated from activated sludge (활성슬러지에서 단리한 Acinetobacter sp.에 의한 원유탄화수소분해)

  • Dong-Hyuk CHOI;Dong Hoon LEE
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.97-108
    • /
    • 2000
  • A Gram-type negative bacteria that can utilize crude oil as the sole source of carbon and energy was isolated from an activated sludge of a local sewage treatment plant and identified tentatively as belonging to the genus Acinetobacter. The isolate could degrade n-alkanes and unidentified hydrocarbons in crude oil and utilize n-alkanes, hydrophobic substrates, as sole carbon and energy sources. n-Alkanes from tridecane (Cl3) to triacontane (C30) in crude oil were degraded simultaneously with no difference in degradation characteristics between the two close odd and even numbered alkanes in carbon numbers. The linear growth of the isolate and the degradation characteristics of Pr-alkanes suggested that the transport of substrates from the oil phase to the site where the substrates undergo the initial oxidation in microorganism might be the rate limiting in the biodegradation process of crude oil constituents. The remainder fraction of substrates after cultivation was considered to reflect the hydrocarbon inclusions in the cell mass, characteristics in Acinetobacter species, and to control the transport of substrates from crude oil phase. On the basis of the results, the isolate was considered to play an important role in the degradation study of hydrophobic environmental pollutants.

  • PDF

Effect of Operational Parameters on the Products from Catalytic Pyrolysis of Date Seeds, Wheat Straw, and Corn Cob in Fixed Bed Reactor

  • Sultan Mahmood;Hafiz Miqdad Masood;Waqar Ali khan;Khurram Shahzad
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.591-597
    • /
    • 2023
  • Pakistan depends heavily on imports for its fuel requirements. In this experiment, catalytic pyrolysis of a blend of feedstock's consisting of date seed, wheat straw, and corn cob was conducted in a fixed bed reactor to produce oil that can be used as an alternative fuel. The main focus was to emphasize the outcome of important variables on the produced oil. The effects of operating conditions on the yield of bio-oil were studied by changing temperature (350-500 ℃), heating rate (10, 15, 20 ℃/min), and particle size (1, 2, 3 mm). Moreover, ZnO was used as a catalyst in the process. First, the thermal degradation of the feedstock was investigated by TGA and DTG analysis at 10 ℃/min of different particle sizes of 1, 2, and 3mm from a temperature range of 0 to 1000 ℃. The optimum temperature was found to be 450 ℃ for maximum degradation, and the oil yield was indicated to be around 37%. It was deduced from the experiment that the maximum production of bio-oil was 32.21% at a temperature of 450 ℃, a particle size of 1mm, and a heating rate of 15 ℃/min. When using the catalyst under the same operating conditions, the bio-oil production increased to 41.05%. The heating value of the produced oil was 22 MJ/kg compared to low-quality biodiesel oil, which could be used as a fuel.

Effects of Soil Types on the Biodegradation of Crude Oil by Nocardia sp. H17-1

  • Yoon, Byung-Dae;Baek, Kyung-Hwa;Kim, Hee-Sik;Moon, Seong-Hoon;Lee, In-Sook;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.901-905
    • /
    • 2004
  • The degradation and mineralization of crude oil were investigated over 50-days in three soils, loamy sand, sand, and combusted loamy, which were artificially contaminated with crude oil (50 g $kg^{-1}$) and inoculated with Nocardia sp. H17-1. The degradation efficiency of total petroleum hydrocarbon (TPH) in sand was the highest at 76% among the three soils. The TPH degradation rate constants $(k_{TPH})$ in loamy sand, sand, and combusted loamy sand were 0.027 $d^{-1}$, 0.063 $d^{-1}$, and 0.016 $d^{-1}$, respectively. In contrast, the total amount of $CO_2$ evolved was the highest at 146.1 mmol in loamy sand. The $CO_2$ evolution rate constants (k_{CO2})$ in loamy sand, sand, and combusted loamy sand were 0.057 $d^{-1}$, 0.066 $d^{-1}$, and 0.037 $d^{-1}$, respectively. Therefore, it seems that the degradation of crude oil in soils can be proportional to the soil pore space and that mineralization can be accelerated with the increase of organic substance.

A Study on Conductivity Characteristics of Insulating Oil by Corona Discharge in Oil (유중(油中)코로나 방전(放電)으로 인(因)한 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究))

  • Kim, Young-Ill
    • Journal of radiological science and technology
    • /
    • v.2 no.1
    • /
    • pp.71-83
    • /
    • 1979
  • Not only the insulating oil used for extra high voltage and high capacity transformer has a lot of possibilites of a corona discharge in oil, but the oil is easily degraded by a response of light oxidization. This study is either to classfy, with priority given to a transformer oil produced in Korea belonging to, the insulating oil No. 2, the sample irradiated the ultraviolet rays, treated a corona discharge in oil by a high voltage DC source and done nothing, or to measure the characteristics of breakdown, V-i, I-t and electrode material. The obtained results can be summarized as followings: (1) Unless the sample is contacted with the air, on the process to irradiate the ultraviolet rays, the sample less influence on the changes of the electric characteristics. At the same time, if the sample is contacted with the air and irradiated the ultraviolet rays, the sample shows a remarkable changes of the electric characteristics, and a declined breakdown strength. This tells us that the influence of the light irradiation must be considered as a primary factor of degrading the insulating oil. (2) In the oil treated by a corona discharge, breakdown voltage is declined more than in the oil not to be treated with it. This means that the degradation of the insulating oil is getting increased by a corona discharge in oil. (3) It shows that the increase of conducting current has little to do with breakdown voltage. (4) The conducting current depending on the electrode materials can be put in order by value as Al>Cu>Fe. This is due to the differences of the work function of each metals, and an chemical reaction with the insulating oil. These result can be a great help in verifying the degradation progress of the insulating oil and furnish a new technical information to the manufacturers of the insulating oil and electrical equipment designers and operators. Besides, this study would be helpful to improve the electrical characteristics of the insulating oil produced in Korea.

  • PDF

Analysis of Degradation Characteristics for Oil-Paper Insulation using Tan Delta Measurement (Tan Delta 측정을 이용한 유침 절연지의 열화특성 분석)

  • Kim, Jeong-Tae;Kim, Woo-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1518-1523
    • /
    • 2016
  • In this study, in order to understand the degradation characteristics of oil-paper insulation for power transformers and OF cables, tan delta was measured using cable model specimens with long-term accelerated thermal and electrical aging. In addition, to find out the degradation level due to the accelerated aging, tensile strengths of aged papers were measured. As a result, tan ${\delta}$ showed the characteristics of slight decrease at the first stage and then increase with the aging time, which could be analyzed due to the evaporation of remaining moisture and the change of aging rate with time. Also, the trend of tensile strengths with aging temperature and time was appeared to be exponentially decreased and by use of these data equivalent calculated lifetimes and accelerated aging factors were derived for each aging temperatures. After then, tan ${\delta}$ was analyzed with the equivalent operating years. For all different aging temperatures, the aged data were very well fit to the equivalent operating years and it is shown that tan ${\delta}$ was increased with the decrease of tensile strength.

Effects of Oil Contamination Levels and Microbial Size on Hydrocarbon Biodegradation. (원유오염농도와 미생물 농도가 탄화수소의 생분해에 미치는 영향)

  • 백경화;김희식;이인숙;오희목;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.408-412
    • /
    • 2003
  • The purpose of this study was to evaluate the Influence of oil concentration and inoculum size on petroleum biodegradation in soil by Nocardia sp. H17-1, isolated from oil-contaminated soil. To investigate the effect of initial oil concentration on total petroleum hydrocarbon (TPH) degradation, the soil was artificially contaminated with 10, 50 or 100 g of Arabian light oil per kg of soil, respectively. After 50 days, Nocardia sp. H17-1 degraded 78,94 and 53% of the each initial TPH concentration, respectively. Also, it produced 1.35, 4.21, and 5.91 mmol of $CO_2$ per g of soil, respectively. The degradation rate constant (k) of TPH was decreased in proportion to the initial oil concentrations while $CO_2$ production was increased with the concentration. The growth of Nocardia sp. H17-1 was remarkably inhibited when it was inoculated into soil containing 100 g of oil per kg of soil. To evaluate the effect of the inoculum size, the soil was artificially contaminated with 50 g of Arabian light oil per kg of soil, and inoculated with $3${\times}$10^{6}$ , $5${\times}$10^{7}$ , $2${\times}$10^{8}$ cells per g of soil, respectively. After 50 days, the degradation of TPH was remained with similar in all treatment but degradation rate constant (k) and evolved $CO_2$ was increased with increasing the inoculum size.

Comparative study on microbial degradation characteristics of liquid and solid n-alkanes by Acinetobacter sp. (Acinetobacter sp. 에 의한 액체, 고체 알칸의 미생물 분해특성 비교연구)

  • Dong-Hyuk CHOI
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.95-104
    • /
    • 1999
  • Comparative biodegradation studies of liquid and solid alkanes and of two different solid alkanes were conducted by an isolated Acinetobacter sp., which degraded crude oil alkanes simultaneously. for the determination of degradation mechanism of hydrophobic crude oil constituents. Also a model oil experimental system composed of a solid alkane. heneicosane, as a substrate and a non-degradable non-aqueous phase liquid. pristane, as an oil matrix was established and studied. It was proposed that the Acinefobacter sp. utilized hydrophobic substrates directly on the surface of them with no difference in the degradation rates between the liquid and solid alkanes. On the basis of the results from the heneicosane/pristane system which imitates crude oil matrix containing solid constituents. the crude oil matrix was considered to reduce the bioavailability of contained substrates by reducing the specific surface area of substrates to contact with microorganisms.

  • PDF

Wood Properties and Residual Creosote Oil of Disused Railway Wood Ties (철도 폐침목의 크레오소오트유 잔류 및 재질 특성)

  • Lee, Jong-Shin;Park, Jong-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.465-469
    • /
    • 2010
  • In order to develop effective recycling technologies of disused railway wood ties, wood properties and residual creosote oil of wood ties were investigated. Among the total 50 wood ties, 32 wood ties were identified as tropical hardwood tree, such as, Keruing (Dipterocarpus spp.), Kempas (Koompassia malaccensis), Kapur (Dryobalanops spp.) Naytoh (Palaquium rostratum), and so on. Disused wood ties showed mostly sound structure without degradation of cell walls by decay fungi. Disused wood ties showed high strengths of bending and compressive parallel to grain because degradation of wood properties was hardly occurred in use under exterior condition. Disused railway wood ties had relatively poor depth of penetration and residual of creosote oil because of refractory wood structures. These results suggest that disused railway wood ties may be useful as recycling wood wastes.

Diagnosis for Degradation of Transformer Oil by an Optical Fiber Sensor (광섬유 센서를 이용한 변압기 절연유의 열화 진단)

  • Yi, Sue-Muk;Kim, Tae-Young;Suh, Kwang-S.;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1563-1565
    • /
    • 2000
  • This paper presents the preliminary results on the application of optical fiber sensor(OFS) for the diagnosis of degradation in the transformer oil. An OFS system using a Mach-Zehnder interferometry technique was built to detect attenuation of acoustic signal produced by discharging. With increasing the number of discharging in the insulation oil, the attenuation of acoustic signal became greater. A strong correlation between electrical and acoustic signal intensities from discharge generated in the transformer oil was confirmed by the results reported here.

  • PDF

Gas detection of transformer oil according to degradation characteristic of insulation material (절연물의열화에 의한 변압기유의 가스분석)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Lee, Suck-Woo;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.574-574
    • /
    • 2005
  • To found out the degradation characteristic of transformer insulation, insulation material was depisited into transformer oil and heated. Due to the thermal stress which added to insulation, the density of carbon dioxide which included in transformer oil was mesured by using the gas density detection equipment of gas sensor and air circulation method. As a result, it didn't match with the transformer supervision standard. But it was found that as thermal stress increased, the density of carbon dioxide propertionally increased.

  • PDF