• 제목/요약/키워드: oil outlet

Search Result 89, Processing Time 0.022 seconds

The Development of Screw Type Supercharger on CNG-Fueled Engine for Heavy Duty Vehicle (대형 CNG 엔진용 스크류형 과급기 개발에 관한 연구)

  • Kang, W.;Park, D.K.;Kim, H.C.;Oh, P.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.195-201
    • /
    • 1998
  • This study aims at the optimal design of rotors and the development of screw type Supercharger of CNG-fueled engine for commercial vehicle. Based on the new rotor profile, an advanced oil free type Supercharger has been developed, which can achieve higher adiabatic efficiency and lower manufacturing cost. The performance test of screw type Supercharger has achieved high volumetric efficiency and the durability on the bench of performance test has also been established in the compact body.

  • PDF

Study of Temperature Dynamic Characteristics of Various Control Methods for MGO Chiller System (MGO Chiller 시스템의 제어 방식에 따른 온도 동특성 연구)

  • Cho, Hee-Joo;Kim, Sung-Hoon;Choi, Jungho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.139-145
    • /
    • 2019
  • It is important that an MGO Chiller System, which is one of the sulfur oxide emission control technologies, is designed to meet the fuel temperature requirements, even with sudden engine load changes. Three different control algorithms (PI, Cascade, and MPC) were applied to an indirect MGO chiller system to compare and analyze the outlet temperature dynamic characteristics of the system through a case study. The results showed that the MPC control method had the best temperature following characteristics in the case study, and the temperature deviation range was reduced by approximately 5% compared to the PI control method.

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

A Study of Performance Characteristics on Hybrid Heat Pump System with Solar Energy as Heat Source (태양열이용 하이브리드 열펌프시스템의 성능특성에 관한 연구)

  • Park, Youn-Cheol;Kim, Ji-Young;Ko, Gwan-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Interests on renewable energy are increased due to oil price and environmental problems aroused from the fossil energy usage. In this study, performances of a solar assisted hybrid heat pump system are analyzed by experimental method. The developed system could runs at two types of operating mode. When the storage temperature is higher than the set temperature, the stored hot water in storage tank is supplied to the load directly. On the other hand, when the storage temperature lower than the set temperature, the water inside of the storage tank is used as heat source of the heat pump. In this study, the system control temperature for the alternation of the operating mode is set to $40^{\circ}C$ of the storage tank outlet. As results, it is founded that the COP of the developed heat pump system shows between 3.0 and 3.5. It is resonable performance for the heating system with a renewable energy as secondary heat source. The solar collect used in this study could supplies heat to the storage tank at over 400 W/m2 solar intensity. If the irradiation is lower than the 400 W/m2, the circulation pump stored and it could not supply heat to the storage tank. It is found that the difference temperature between the outlet of the storage tank and collector is $3^{\circ}C$. Even though, the extended study should be conducted to get a optimum performance of the developed system with various operating condition and control strategies.

The Effect of Temperature on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박 열교환기 세관의 SCC에 미치는 용액의 온도의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.1-6
    • /
    • 2004
  • In general, inlet temperature of cooling sea water for steam turbine condenser is about $25^{\circ}C$ and outlet temperature is about $60^{\circ}C$. For oil cooler, outlet temperature is about $40^{\circ}C$. Therefore corrosion heavily depends on the temperature of the coolant of a heat exchanger system. It is necessary to set the temperature of the cooling water to have maximum heat transfer efficiency. This paper was studied on the effect of temperature on SCC of Al-brass which is used as a tube material of vessel heat exchanger in $3.5\%$ NaCl + $0.1\%\;NH_4OH$ solution under flow by constant displacement tester. Based on the test results, the behavior of polarization characteristic, stress corrosion crack popagation and dezincification characteristic of Al-brass was investigated.

  • PDF

Cooling Performance Characteristics of High-Performance Heat Pump with VI Cycle Using Re-Cooler (재냉기를 이용한 고성능 VI(Vapor Injection)사이클 열펌프의 냉방 성능특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • In this study, we experimentally investigate the performance characteristics of a high-performance summer-cooling heat pump for an R410A by applying an air-cooled-type vapor-injection (VI) cycle. The devices used for the experiment consist of a VI compressor, condenser, oil separator, plate-type heat-exchanger, economizer, evaporator, and re-cooler. The experimental conditions employed for the cooling performance were divided into three cycles. First, in Cycle A, we apply a VI cycle and with no heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant in the re-cooler. For Cycle B, there is heat exchange, and for Cycle C, there is neither a VI cycle nor heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant. From the analysis results, we observe that the performance was highest in the VI cycle with heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant (Cycle B), while it was lowest in Cycle C without application of the VI cycle. Moreover, the cooling coefficient of Performance ($COP_C$) averaged 3.5 in Cycle B, which was 8.6% higher than the corresponding value in Cycle A, and 33% higher than that in Cycle C.

Estimation of Washing Duration of Desulfurized Absorber in a Heavy Oil Power Plant (중유화력발전소 탈황 흡수탑 세정시기예측)

  • Jang, Yeong Gi;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.24-28
    • /
    • 2016
  • In desulfurization facilities of oil-fired power plant, gypsum scale is attached in the absorber inner surface as the operating time increases. For this reason, the maximum possible load of the power generation is set down, resulting in further generation stop. Cleaning of absorber for scale removal can be determined at the time of setting down of the maximum possible load. In this study, 6 weeks before the maximum possible load of the power generation was down set, at the same time and desulfurization facilities outlet $SO_2$ concentration value was more than 130ppm, absorber differential pressure exceeded $380mmH_2O$, it was confirmed to be the time that has elapsed 44 weeks after the previous absorber cleaning. Cleaning time of the absorber was predicted to be a time which has elapsed 50 weeks from the previous cleaning time.

  • PDF

Effect of Micro-grooves Manufactured via Ultrasonic Nanocrystalline Surface Modification on Sliding Friction (초음파나노표면개질기술로 제작된 마이크로 그루브가 미끄럼 마찰 특성에 주는 영향)

  • Ro, Junsuek;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The surface texture produced via surface texturing is an important approach for controlling the tribological behavior of friction behavior of mechanical devices. The purpose of this study is to investigate the effect of grooves generated via ultrasonic nanocrystal surface modification (UNSM) technology on the tribological performance of AISI 4150 steel against stainless steel 316L. In the study, tribological tests are performed under two different regimes, namely mixed and hydrodynamic lubrication, by varying the applied normal load and reciprocating speed during the tests. According to the test results, the friction coefficient decreases as static load (10 N, 30 N, and 50 N) of UNSM technology increases in the mixed lubrication regime. Conversely, the friction coefficient increases as the static load (10 N, 30 N, and 50 N) of UNSM technology increases in the hydrodynamic lubrication regime. Hence, the results indicate that micro-grooves generate hydrodynamic pressure in the outlet, which increases the oil film thickness between the two mating surfaces. This potentially leads to a reduction in friction in the mixed lubrication regime due to the prevention of contact of asperities and debris. However, the results indicate an adverse effect in the hydrodynamic lubrication regime. In this regard, additional experiments should be performed to investigate the effect of grooves generated by UNSM technology at varying conditions on the friction behavior of AISI 4150 steel, which in turn can be controlled by the generated pressure and oil film thickness at the contact interface.

Experimental Study on the Diagnosis and Failure Prediction for Long-term Performance of ESP to Optimize Operation in Oil and Gas Wells (유·가스정 최적 운영을 위한 ESP의 장기 성능 진단 및 고장 예측 실험 연구)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2023
  • In general, electric submersible pumps (ESPs), which have an average life of 1.0 to 1.5 years, experience a decrease in performance and a reduction in life of the pump depending on oil and gas reservoir characteristics and operating conditions in wells. As the result, the failure of ESP causes high well workover costs due to retrieval and installation, and additional costs due to shut down. In this study, a flow loop system was designed and established to predict the life of ESP in long­term operation of oil and gas wells, and the life cycle data of ESP from the time of installation to the time of failure was acquired and analyzed. Among the data acquired from the system, flow rate, inlet and outlet temperature and pressure, and the data of the vibrator installed on the outside of ESP were analyzed, and then the performance status according to long-term operation was classified into five stages: normal, advice I, advice II, maintenance, and failed. Through the experiments, it was found that there was a difference in the data trend by stage during the long­term operation of the ESP, and then the condition of the ESP was diagnosed and the failure of the pump was predicted according to the operating time. The results derived from this study can be used to develop a failure prediction program and data analysis algorithm for monitoring the condition of ESPs operated in oil and gas wells.

Experimental study for natural gas production from hydrate reservoir by electric heating method

  • Lee Hoseob;Yang Hojoon;Lee Jeonghwan;Sung Wonmo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.695-702
    • /
    • 2003
  • In this study, an experimental apparatus has been designed and set-up to analyse the dissociating phenomena of hydrate in porous rock using electric heating method supplied at downhole. The electric heat injecting experiments have been performed to investigate the heat transfer within the core, the dissociating phenomena of hydrate, and the productivities of dissociated gas and water. These experiments were under constant heat injecting method as well as preheating methods. From the experimental results, it is seen that the hydrates is dissociated along the phase equilibrium curve and dissociation of hydrate is accelerated with heat. The injected heat is consumed for the dissociation and also it is lost together with outflow of the dissociated gas and water. From the investigation of gas producing behavior for various heat injecting methods, as the injected heat is greater, dissociation is accelerated faster at outlet and hence the initial gas production becomes higher. Also, it is shown that the initial gas productivity under the constant heating method is better, however, the energy efficiency is low because of smaller amount of the produced gas comparing to the amount of heat injected. In the experiments of preheating method, it was seen that gas production only initial stage is different with the preheating time, but the producing behaviors of gas production are similar.

  • PDF