• Title/Summary/Keyword: oil film pressure

Search Result 161, Processing Time 0.022 seconds

Effect of Electric Current on Friction of Hydraulic Members (유압구동재의 마찰에 미치는 전류의 영향)

  • 전성재;강인혁;류미라;조연상;박흥식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.16-21
    • /
    • 2002
  • Generally, Oxidization film are generated by friction and wear in lubricant oil. It is effect that the heat and pressure act on contact area. Because the electrons movement progress the oxidization, if the electrons movement be regulated, the thickness of oxidization film can be regulated and friction characteristics can be improved. But electronic current can deteriorate friction characteristics, so various characteristics must be investigated on transforming of electronic current. Therefor, using the Norton equation, short current were transformed between ball and disk. Also, an experiment was carried out using ball on disk type tester. So, we studied up on effect of current for friction characteristics.

  • PDF

Effect of Electric Current on Friction of Hydraulic Members (윤활하에서의 마찰 특성에 미치는 전류의 영향)

  • Jeon, Seong-Jae;Gang, In-Hyeok;Ryu, Mi-Ra;Jo, Yeon-Sang;Park, Hong-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.150-155
    • /
    • 2002
  • Generally, Oxidization film are generated by friction and wear in lubricant oil. It is effect that the heat and pressure act on contact area. Because the electrons movement progress the oxidization, if the electrons movement be regulated, the thickness of oxidization film can be regulated and friction characteristics can be improved. But electronic current can deteriorate friction characteristics, so various characteristics must be investigated on transforming of electronic current. Therefor, using the Norton equation, short current were transformed between ball and disk. Also, an experiment was carried out using ball on disk type tester. So, we studied up on effect of current for friction characteristics.

  • PDF

A Study on the Characteristics of Sound Source of Hydrodynamic Journal Bearings (유체 윤활 저널 베어링의 음원 특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.333-338
    • /
    • 2002
  • Results of theoretical investigations on acoustical properties of hydrodynamic journal bearings are presented. Nonlinear analysis including rotor imbalance is performed for a rotor-bearing system in order to obtain acoustical properties of hydrodynamic journal bearings. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film. Acoustical properties of hydrodynamic journal bearings are identified through frequency analysis of oil pressure fluctuation calculated from the nonlinear transient analysis. The results show that the acoustical frequency spectra of the fluid film are pure tone spectra, containing the frequency of the shaft rotation and its super-harmonics. The analysis also shows that super-harmonics are predominant at the neighborhood of the fluid film reformation and rupture regions.

A Study on Engine Durability Considering Oil Consumption and Wear of Piston-Ring Pack and Cylinder Bore (피스톤 링 팩 및 실린더 보아 마모와 오일소모를 고려한 엔진 내구수명 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.155-163
    • /
    • 2006
  • Ring, groove and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face, groove geometry and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blowby and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings, grooves and cylinder bore are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below.

A Study on Cylinder Bore Wear during Engine Durability Test (엔진 내구시험 시 실린더 보아의 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.131-136
    • /
    • 2006
  • Cylinder bore wear may not be a problem in most current automotive engines. However, a small change in cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each pare0s wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of cylinder bore diameter are obtained from three engines before and after engine durability test. The calculated wear data of cylinder bore diameter are turn out to be twice of the lower bound of averaged test values at TDC and the lower bound at BDC.

A Study on Ring Face and Groove Wear during Engine Durability Test (엔진 내구시험 시 링 외주면 및 그루브 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2006
  • Ring and groove wear may not be a problem in most current automotive engines. However, a small change in ring face and groove geometry can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings and grooves are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be at the lower bound of aver-aged test values or a little below.

Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors (증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.

Finite Element Analysis of Contact Pressure Behavior in Compression Ring-Oil Film (압축링-유막간의 접촉압력 거동에 관한 유한요소해석)

  • 김한구;김청균;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1995.06b
    • /
    • pp.48-53
    • /
    • 1995
  • 본 연구에서는 윤활유막의 접촉압력 거동문제를 다른 각도에서 유한요소기법으로 해석하고자 한다. 즉, 혼합기가 폭발하게 되면 피스톤과 실린더 사이의 윤활유막이 순간적으로 초고압을 받아서 윤활유막은 밀폐된 공간에서 마치 폴리머처럼 거동할 것이라고 가정할 수 있다. 이와 같은 현상은 극히 짧은 시간에 국부적으로 일어날 것으로 예상되며, 이러한 작동조건에서 피스톤 링의 접촉면 형상에 따른 피스톤 압축링-윤활유막 사이의 접촉압력 거동문제를 미시적일 측면에서 유한요소기법으로 피스톤의 동적문제를 해석하고자 한다.

  • PDF

THD Analysis ol Bimetal Bearing (바이메탈 베어링의 THD해석)

  • 한동철;조명래;정진영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.228-234
    • /
    • 1998
  • The aim of this paper is to study the characteristics of thermo-hydrodynamic lubrication in the bimetal bearings. Bimetal bearing is composed of lining and back metal. The THD model is proposed to calculate oil film temperature and pressure in the bimetal bearing. As results of analysis, comparative results of maximum bearing temperature are presented for the various materials and thickness of lining metal.

  • PDF

Analysis of Characteristics of Hydrostatic Bearing in Hydraulic Cylinder (유압 실린더 내의 정압 베어링 특성에 관한 연구)

  • 백승희;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.63-69
    • /
    • 1993
  • In this paper the characteristics of Hydrostatic Bearing of piston of cylinder are investigated . The dynamic characteristic equations of piston considering both parallel and rotational motion and time dependent modified Reynolds Equation are analyzed and the dynamic pressure distribution of oil film is numerically calculated by perturbation method and finite difference method. and the atatic analysis is carried out. so, the influence of design parameter of piston on the characteristic of bearing is analyzed.

  • PDF