• Title/Summary/Keyword: oil contamination

Search Result 242, Processing Time 0.024 seconds

Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil (점도 변화에 따른 유류오염 모래의 역학적 특성)

  • Hong, Seung Seo;Bae, Gu-Jin;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.577-585
    • /
    • 2015
  • Contamination of soil due to an oil spill influences its subsequent behavior. An investigation was conducted to study the effect of oil viscosity on compaction characteristics, coefficient of permeability, and shear strength. Water permeability was also determined by using Kerosene, Engine oil, and Crude-oil as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. Direct shear test was conducted to investigate the effect of oil in the pore space in sandy ground. angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand.

Investigating the role of nano in preserving the environment with new energy and preventing oil pollution

  • Yong Huang;Lei Zhang
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.541-550
    • /
    • 2023
  • The escalating growth of industrial sectors has led to a pervasive global problem—oil pollution, particularly in industrial areas. The release of substantial volumes of oil and its by-products into the environment has resulted in extensive contamination. Multiple factors contribute to the entry of these substances into water bodies and soils, thereby inflicting irreparable consequences on ecosystems, natural resources, and human health. Consequently, it becomes imperative to comprehend the characteristics and behavior of oil pollution, anticipate its impacts, and develop effective mitigation strategies. Understanding this intricate issue requires considering the physicochemical properties of the environment, the interactions between oil and sediments, and biological factors such as evaporation and dissolution. Although the oil industry has brought about remarkable advancements, its activities have raised significant concerns regarding pollution from extraction and production processes. Oil-rich nations face a particularly challenging predicament of soil pollution caused by petroleum compounds. The areas surrounding oil exploration mines and refineries often endure contamination due to oil leakages from storage tanks and transmission lines resulting from deterioration and damage. Investigating the dispersion of such pollutants and devising methods to remediate petroleum-contaminated soil represent crucial and intricate issues within the realm of environmental geotechnics.

Interpretation of Contaminated Soil by Complex Oil (토양 내 복합유종에 의한 오염 해석 연구)

  • Lim, Young-Kwan;Kim, Jeong-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.13-17
    • /
    • 2017
  • Over 30% of domestic soil contamination has occurred via petroleum products and complex oil. Moreover, contamination by complex oil is more intense than it is by a single petroleum product species. In this study, we analyzed sectional TPH (total petroleum hydrocarbon) pattern and sectional ratio of current domestically distributed petroleum products, such as kerosene, diesel, bunker C, and lubricant and complex oils, to determine pollution characteristics of the soil. In the TPH pattern, kerosene, which is a light distillate, had an early retention time, and lubricant oil, which is a heavy distillate, had a late retention time in the gas chromatogram. In addition, we obtained a complexly contaminated soil via diesel and lubricant oil from the Navy and inspected it for its ratio of complex oil species. The inspection results showed that this soil was contaminated with 85% diesel and 15% lubricant oil. The method developed in this study could be used to determine complex petroleum sources and ratios at sites with accidentally contaminated soil.

Heavy Metal Contamination in Sediments by Herbei Sprit Oil Spill (허베이 스피리트 원유 유출 사고에 의한 퇴적물의 중금속 오염)

  • Song, Yun Ho;Choi, Man Sik;Woo, Jun Sik;Sim, Won Joon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.70-79
    • /
    • 2013
  • Since crude oil contains various pollutants including heavy metals, the environmental impact should be assessed for heavy metals as well as oil itself. In order to estimate the extent of heavy metal contamination, surface sediments were collected at the intertidal and coastal zone around the Herbei sprit oil spill area during December 2007 and January 2008. Organic carbon, sulfur and heavy metals were determined to assess heavy metal contamination in sediments. The crude oils contained C, S, V and Ni, but little toxic metals such as As, Cd, etc. From organic carbon content, the highest contaminated site was estimated that oils contributed to sediments up to 10%, and this site showed high V concentration. Potentially contaminated sediments by crude oil could be differentiated from unaffected sediments through V/Al and Ni/Al ratios, which can be used as indicators of oil contamination even after the oils were fully degraded.

MODFLOW를 이용한 유류오염지역 지하수 유동 및 오염물질 이동 평가

  • 전권호;문철환;이진용;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.536-539
    • /
    • 2003
  • This study area has been contaminated by oils. To identify contaminated ranges and to assess the possibility of contamination dispersion, monitoring wells were installed and slug test, field soil permeability test, automatic or manual measurement of groundwater table, and groundwater quality analyses in field and laboratory were performed. In addition, a groundwater modeling program was used to assess the possibility of oil contamination dispersion, based on field data and groundwater quality data. The results showed that concentration of oil contaminants in groundwater have been decreased by dispersion and adsorption.

  • PDF

Effect of palm oil on the basic geotechnical properties of kaolin

  • Sriraam, Anirudh Subramanya;Raghunandan, Mavinakere Eshwaraiah;Ti, Tey Beng;Kodikara, Jayantha
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.179-188
    • /
    • 2019
  • This paper presents an experimental study to evaluate the effect of palm oil on the selected basic physical-chemical and geotechnical properties of kaolin. The experimental findings are further compared with literature outcomes investigating similar properties of fine grained soils subjected to contamination by different types of oils. To this end, palm oil was mixed with oven dried kaolin samples-aiding oil's interaction (coating) with dry particles first, in anticipation to emphasize the effect of oil on the properties of kaolin, which would be difficult to achieve otherwise. Oil content was limited to 40% by dry weight of kaolin, supplemented at intervals of 10% from clean kaolin samples. Observations highlight physical particle-to-particle bonding resulting in the formation of pseudo-silt sized clusters due to palm oil's interaction as evinced in the particle size distribution and SEM micrographs. These clusters, aided by water repellency property of the oil coating the kaolin particles, was analyzed to show notable variations in kaolin's consistency-measured as liquid and plastic limits. Furthermore, results from compaction tests indicates contribution of oil's viscosity on the compaction behavior of kaolin - showing decrease in the maximum dry unit weight (${\gamma}_{d,max}$) and optimum moisture content ($w_{opt}$) values with increasing oil contents, while their decrease rates were directly and inversely proportional in ${\gamma}_{d,max}$ and $w_{opt}$ values with oil contents respectively. Comparative study in similar terms, also validates this lower and higher decrease rates in ${\gamma}_{d,max}$ and $w_{opt}$ values of the fine grained soils respectively, when subjected to contamination by oil with higher viscosity.

In-line Smart Oil Sensor for Machine Condition Monitoring (기계 상태진단을 위한 인-라인형 오일 모니터링 스마트 센서)

  • Kong, H.;Ossia, C.V.;Han, H.G.;Markova, L.
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.111-121
    • /
    • 2008
  • An integrated in-line oil monitoring detector assigned for continuous in situ monitoring multiple parameters of oil performance for predicting economically optimal oil change intervals and equipment condition control is presented in this study. The detector estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical intensity of oil in three optical wavebands ("Red", "Green" and "Blue") and water content is evaluated as Relative Saturation of oil by water. The detector is able to monitor oils with low light absorption (hydraulic, transformer, turbine, compressor and etc. oils) as well as oils with rather high light absorption in visible waveband (diesel and etc. oils). In a case study that the detector is applied to a diesel engine oil, it is found that the detector provides good results on oil chemical degradation as well as soot concentration.

Evaluation of Oil Infiltration Behavior in Porous Media Using Dielectric Response (유전율에 의한 지반 매질내 유류침투거동 분석)

  • Kim Man-Il;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 2005
  • For detecting a ground contamination survey, soil sampling method have been used a drilling or coring technique in general. However these methods are very difficult to systematically real-time monitoring of variation of contamination degree in field. ]'n this research frequency Domain Reflectometry (FDR) system was suggested and carried out to experimental approaches for determination of oil contamination on surface and underground. Experimental method using FDR method was discussed with feasibility of measurement in the laboratory column test. It is determined to degree of oil contamination due to response of dielectric constant re-lated with volumetric water content(θ/sub w/) and volumetric oil content( θ/sub al/ ) of saturated and unsaturated soil media. And physical properties such as effective porosity and oil residual ratio of saturated soil media were also measured through real-time monitoring works using installed FDR measurement sensors, which are defected characteristics of oil movement in the saturated soil media under the soil column tests. In the results of these experiments, a range of effective porosity was estimated to about 0.35 compared with initial porosity 0.40 of manufactured saturated soil media, which is also calculated to about 87.5% to the ratio of initial porosity to effective porosity. Finally oil residual ratio which is compared with volumetric water content and volumetric oil content was calculated about 62.5%.

An Experimental Study on the Measurement of Soot Contamination in A Diesel Engine Oil (디젤 엔진오일 내 Soot 함량 증가에 따른 오염도 측정에 관한 실험적 고찰)

  • Jo, Seong-Yong;Gong, Ho-Seong;Yun, Ui-Seong;Han, Heung-Gu;Jeong, Dong-Yun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.120-129
    • /
    • 2002
  • New method and device for the on-line measurement of soot concentration in a diesel engine oil are proposed, where the measurement principle is based mainly on attenuated internal total reflection. Various laboratory tests of the detector were performed mainly with carbon black particles of different contamination levels. It was found that the proposed detector could be well used to monitor oil deterioration due to soot contamination. Operational range of the detector was found from 0 to 5 mass percentage of soot content. Test results with water and fuel dilution showed that these effects were not remarkable. However, adsorption of carbon black particles to a measurement surface was considered to be a critical problem in the new detector. Effects of particle deposition onto the interface was experimentally evaluated with the oil temperature and turbulence and discussed throughout this work.

  • PDF

Current Issues on the Oil UST Management and Future Directions for the Prevention of the Subsurface Contamination (현행 주유소 지하유류저장시설 관리의 문제점과 토양${\cdot}$지하수 오염 방지를 위한 개선방안 연구)

  • Kim Meejeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.62-73
    • /
    • 2004
  • The current status and problems of UST management in gas stations were reviewed, and suggestions were made for possible improvement of UST management. Regulations and programs relevant through the whole life cycle of the UST, such as construction, installation, operation, and disclosure are insufficient to prevent oil release. The UST requirements are less stringent compared to those of the U.S. and EU members. Current soil test does not seem to be practically effective in detecting soil contamination caused by oil release. The potential for subsurface contamination due to oil release from the UST is estimated from available data other than soil test results. Much higher following future directions and suggestions are made to improve current unsatisfactory UST management: Firstly, increasing the UST requirements - establishing more stringent standards for new UST facilities, and adding new regulatory requirements for existing UST facilities; secondly, replacing current soil test with the tank and piping tests; thirdly, reinforcing programs for supervising the tank construction and installation; fourthly, constructing a system in which independent gas stations can properly manage the USTs; and lastly, educating UST owners and operators, and constructing DB of UST facilities.