Browse > Article
http://dx.doi.org/10.12989/gae.2019.18.2.179

Effect of palm oil on the basic geotechnical properties of kaolin  

Sriraam, Anirudh Subramanya (Civil Engineering Discipline, School of Engineering, Monash University Malaysia)
Raghunandan, Mavinakere Eshwaraiah (Civil Engineering Discipline, School of Engineering, Monash University Malaysia)
Ti, Tey Beng (Chemical Engineering Discipline, School of Engineering, Monash University Malaysia)
Kodikara, Jayantha (Department of Civil Engineering, Monash University)
Publication Information
Geomechanics and Engineering / v.18, no.2, 2019 , pp. 179-188 More about this Journal
Abstract
This paper presents an experimental study to evaluate the effect of palm oil on the selected basic physical-chemical and geotechnical properties of kaolin. The experimental findings are further compared with literature outcomes investigating similar properties of fine grained soils subjected to contamination by different types of oils. To this end, palm oil was mixed with oven dried kaolin samples-aiding oil's interaction (coating) with dry particles first, in anticipation to emphasize the effect of oil on the properties of kaolin, which would be difficult to achieve otherwise. Oil content was limited to 40% by dry weight of kaolin, supplemented at intervals of 10% from clean kaolin samples. Observations highlight physical particle-to-particle bonding resulting in the formation of pseudo-silt sized clusters due to palm oil's interaction as evinced in the particle size distribution and SEM micrographs. These clusters, aided by water repellency property of the oil coating the kaolin particles, was analyzed to show notable variations in kaolin's consistency-measured as liquid and plastic limits. Furthermore, results from compaction tests indicates contribution of oil's viscosity on the compaction behavior of kaolin - showing decrease in the maximum dry unit weight (${\gamma}_{d,max}$) and optimum moisture content ($w_{opt}$) values with increasing oil contents, while their decrease rates were directly and inversely proportional in ${\gamma}_{d,max}$ and $w_{opt}$ values with oil contents respectively. Comparative study in similar terms, also validates this lower and higher decrease rates in ${\gamma}_{d,max}$ and $w_{opt}$ values of the fine grained soils respectively, when subjected to contamination by oil with higher viscosity.
Keywords
oil contamination; ground improvement; laboratory analysis; plasticity; soil behavior;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Khamehchiyan, M., Charkhabi, A.H. and Tajik, M. (2007), "Effects of crude oil contamination on geotechnical properties of clayey and sandy soils", Eng. Geol., 89(3-4), 220-229. https://doi.org/10.1016/j.enggeo.2006.10.009.   DOI
2 Khosravi, E., Ghasemzadeh, H., Sabour, M.R. and Yazdani, H. (2013), "Geotechnical properties of gas oil-contaminated kaolinite", Eng. Geol., 166, 11-16. https://doi.org/10.1016/j.enggeo.2013.08.004   DOI
3 Lai, O.M., Tan, C.P. and Akoh, C.C. (2015), Palm Oil Production, Processing, Characterization, and Uses, Academic and AOCS Press, https://doi.org/10.1016/C2015-0-02411-X.
4 Lambe, T.W. (1958), "The engineering behaviour of compacted clay", J. Soil Mech. Found. Div., 84(2), 1-35.
5 Lawton, E.C., Fragaszy, R.J. and Hetherington, M.D. (1992), "Review of wetting-induced collapse in compacted soil", J. Geotech. Eng., 118(9), 1376-1394. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1376).   DOI
6 Lim, M.W., Lau, E.V. and Poh, P.E. (2016), "A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions", Mar. Pollut. Bull., 109(1), 14-45. https://doi.org/10.1016/j.marpolbul.2016.04.023.   DOI
7 Liu, Z., Liu, S., Cai, Y. and Fang, W. (2015), "Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method", Environ. Sci. Pollut. Res., 22(11), 8216-8223. https://doi.org/10.1007/s11356-014-3964-7.   DOI
8 Liu, Z., Wang, H., Hantoro, W.S., Sathiamurthy, E., Colin, C., Zhao, Y. and Li, J. (2012), "Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra)", Chem. Geol., 291, 1-12. https://doi.org/10.1016/j.chemgeo.2011.11.015.   DOI
9 MacNeill, M. (2016). Annual Report, Vienna, Austria: Organization of the Petroleum Exporting Countries.
10 Meegoda, J.N., Chen, B., Gunasekera, S.D. and Pederson, P. (1998), Compaction Characteristics of Contaminated Soils: Reuse as a Road Base Material in Recycled Materials in Geotechnical Applications, ASCE Geotechnical Special Publication No. 79, 195-209.
11 Mitchell, J.K. and Soga, K. (2005). Fundamentals of Soil Behavior, John & Wiley Sons.
12 Mohammadi-Sichani, M., Assadi, M.M., Farazmand, A., Kianirad, M., Ahadi, A. and Hadian-Ghahderijani, H. (2018), "Ability of Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum compost in biodegradation of petroleum hydrocarbon-contaminated soil", Int. J. Environ. Sci. Technol., 16(5), 1-8. https://doi.org/10.1007/s13762-017-1636-0.
13 Mohanty, S.K., Pradhan, P.K. and Mohanty, C.R. (2017), "Stabilization of expansive soil using industrial wastes", Geomech. Eng., 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111   DOI
14 Takawira, A., Gwenzi, W. and Nyamugafata, P. (2014), "Does hydrocarbon contamination induce water repellency and changes in hydraulic properties in inherently wettable tropical sandy soils?", Geoderma, 235-236, 279-289. https://doi.org/10.1016/j.geoderma.2014.07.023.   DOI
15 Soleimaninanadegani, M. and Manshad, S. (2014), "Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms", Int. Scholar. Res. Notices, 1-8. http://dx.doi.org/10.1155/2014/727049
16 Sridharan, A. and Jayadeva, M.S. (1982), "Double layer theory and compressibility of clays", Geotechnique, 32(2), 133-144. https://doi.org/10.1680/geot.1982.32.2.133.   DOI
17 Stiver, W. and Mackay, D. (1984), "Evaporation rate of spills of hydrocarbons and petroleum mixtures", Environ. Sci. Technol., 18(11), 834-840. https://doi.org/10.1021/es00129a006.   DOI
18 Tan, C.P., Che Man, Y.B., Selamat, J. and Yusoff, M.S.A. (2001), "Application of arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry", J. Amer. Oil Chem. Soc., 78(11), 1133-1138. https://doi.org/10.1007/s11746-001-0401-1.   DOI
19 Urum, K., Grigson, S., Pekdemir, T. and McMenamy, S. (2006), "A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils", Chemosphere, 62(9), 1403-1410. https://doi.org/10.1016/j.chemosphere.2005.05.016   DOI
20 Trzcinski, J., Williams, D.J. and Zbik, M.S (2015), "Can hydrocarbon contamination influence clay soil grain size composition?", Appl. Clay Sci., 109-110, 49-54. https://doi.org/10.1016/j.clay.2015.03.014.   DOI
21 Williams, N.D., Walling, D.E. and Leeks, G.J.L. (2004), "The settling behaviour of fine sediment particles: Some preliminary results from LISST instruments", Proceedings of the International Symposium on Sediment Transfer through the Fluvial System, Moscow, Russia, Russia.
22 Yoshinaka, R. and Kazama, H. (1973), "Microstructure of compacted kaolin clay", Soil. Found., 13(2), 19-34. https://doi.org/10.1016/0012-8252(72)90112-2.   DOI
23 Yu, E. (2017), Hong Kong cleans up greasy beaches after palm oil spill: Phys.org. https://phys.org/news/2017-08-hong-konggreasy-beaches-palm.html.
24 Yu, H., Huang, X., Ning, J., Li, Z. and Zhao, Y. (2016), "Improving performance of soil stabilizer by scientific combining of industrial wastes", Geomech. Eng., 10(2), 247-256. https://doi.org/10.12989/gae.2016.10.2.247.   DOI
25 Zbik, M. and Horn, R.G. (2003), "Hydrophobic attraction may contribute to aqueous flocculation of clays", Colloid. Surface. A: Physicochem. Eng. Aspects, 222(1-3), 323-328. https://doi.org/10.1016/S0927-7757(03)00250-4.   DOI
26 Mowat, L. (2018), British coast LEGALLY used as dumping ground of palm oil by foreign tankers: Express, https://www.express.co.uk/news/world/914723/palm-oil-shipspoison-waters-British-waters-Cornwall-European-Maritime-Safety-Agency.
27 MPOB (2017). Overview of the Malaysian Oil Palm Industry, Kuala Lumpur: Malaysian Palm Oil Board.
28 Nyer, E.K. (2000). In situ Treatment Technology, CRC Press.
29 Nagarajan, J., Ramanan, R.N., Raghunandan, M.E., Galanakis, C.M. and Krishnamurthy, N.P. (2017), Chapter 8 - Carotenoids. Nutraceutical and Functional Food Components, Academic Press, 259-296, https://doi.org/10.1016/B978-0-12-805257-0.00008-9.
30 Nasehi, S.A., Uromeihy, A., Nikudel, M.R. and Morsali, A. (2016), "Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils", Geotech. Geol. Eng., 34(1), 333-345. https://doi.org/10.1007/s10706-015-9948-7.   DOI
31 Olafisoye, O.B., Oguntibeju, O.O., and Osibote, O.A. (2017), "Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review", Crit. Rev. Food Sci. Nutr., 57(7), 1295-1315. https://doi.org/10.1080/10408398.2014.886032.   DOI
32 Pandey, A. and Bind, Y.K. (2014), "Effects of oil contamination on geotechnical properties of alluvial soil Naini, Allahabad", Int. J. Innov. Technol. Explor. Eng., 3(8), 39-42.
33 Rahman, Z., Umar, H. and Ahmad, N. (2010), "Geotechnical characteristics of oil-contaminated granitic & metasedimentary soils", Asian J. Appl. Sci., 3(4), 237-249. http://dx.doi.org/10.3923/ajaps.2010.237.249.   DOI
34 Rimmer, A., Parlange, J.Y., Steenhuis, T.S., Darnault, C. and Condit, W. (1996), "Wetting and nonwetting fluid displacements in porous media", Transport Porous Media, 25(2), 205-215. https://doi.org/10.1007/BF00135856.   DOI
35 Saada, A., Siffert, B. and Papirer, E. (1995), "Comparison of the hydrophilicity/hydrophobicity of illites and kaolinites", J. Colloid Interfac. Sci., 174(1), 185-190. https://doi.org/10.1006/jcis.1995.1381   DOI
36 Murray, H.H. (2000), "Traditional and new applications for kaolin, smectite, and palygorskite: A general overview", Applied Clay Sci., 17(5), 207-221.   DOI
37 Bian, H., Liu, S., Cai, G. and Chu, Y. (2016), "Influence of diesel pollution on the physical properties of soils", Jap. Geotech. Soc. Special Publ., 2(14), 552-555. https://doi.org/10.3208/jgssp.CHN-16.
38 Saberian, M. and Khabiri, M.M. (2018), "Effect of oil pollution on function of sandy soils in protected deserts and investigation of their improvement guidelines (case study: Kalmand area, Iran)", Environ. Geochem. Health, 40(1), 243-254. https://doi.org/10.1007/s10653-016-9897-y.   DOI
39 Santos, A.G.D., Souza, L.D., Caldeira, V.P.S., Farias, M.F., Fernandes Jr, V.J. and Araujo, A.S (2014), "Kinetic study and thermoxidative degradation of palm oil and biodiesel", Thermochimica Acta, 592, 18-22. https://doi.org/10.1016/j.tca.2014.08.006   DOI
40 Shah, S.J., Shroff, A.V., Patel, J.V., Tiwari, K.C. and Ramakrishnan, D. (2003), "Stabilization of fuel oil contaminated soil-A case study", Geotech. Geol. Eng., 21(4), 415-427. https://doi.org/10.1023/B:GEGE.0000006052.61830.1a.   DOI
41 Brunauer, S., Emmett, P.H. and Teller, E. (1938), "Adsorption of gases in multimolecular layers", J. Amer. Chem. Soc., 60(2), 309-319. https://doi.org/10.1021/ja01269a023.   DOI
42 Chang, I. and Cho, G. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.   DOI
43 de Souza, C.M.P., dos Santos, D.P.G., Soares, B.S.A., de Santana, C.P., Apolinario, A.C., da Cunha, E.V.L., Damasceno, B.P.G., da Veiga Jr, V.F., Santana, D.P. and da Silva, J.A. (2014), "Physicochemical characterization and in vitro evaluation of the photoprotective activity of the oil from Opuntia ficus-indica (L.) Mill. Seeds", Afr. J. Pharm. Pharmacol., 8(33), 824-831. https://doi.org/10.5897/AJPP2014.4012.   DOI
44 Delage, P., Audiguier, M., Cui, Y. and Howat, M.D. (1996), "Microstructure of a compacted silt", Can. Geotech. J., 33(1), 150-158. https://doi.org/10.1139/t96-030.   DOI
45 Doerr, S.H., Shakesby, R.A. and Walsh, R.P.D. (2000), "Soil water repellency: its causes characteristics & hydro-geomorphological significance", Earth-Sci. Rev., 51(1-4), 33-65. https://doi.org/10.1016/S0012-8252(00)00011-8.   DOI
46 Ijimdiya, T.S. (2012), "Effect of oil contamination on particle size distribution and plasticity characteristics of lateritic soil", Adv. Mater. Res., 367, 19-25. https://doi.org/10.4028/www.scientific.net/AMR.367.19.   DOI
47 FAO (2016). World Food Programme - 2015, The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress, Food and Agriculture Organization Publications, Rome, Italy. http://www.fao.org/3/a-i4646e.pdf.
48 Goh, S.H., Choo, Y.M. and Ong, S.H. (1985), "Minor constituents of palm oil", J. Amer. Oil Chem. Soc., 62(2), 237-240. https://doi.org/10.1007/BF02541384.   DOI
49 Holt, J.B., Cutler, I.B. and Wadsworth, M.E. (1962), "Rate of thermal dehydration of kaolinite in vacuum", J. Amer. Ceramic Soc., 45(3), 133-136. https://doi.org/10.1111/j.1151-2916.1962.tb11101.x.   DOI
50 Izdebska-Mucha, D., Trzcinsk, J., Zbik, M.S. and Frost, R.L. (2011), "Influence of hydrocarbon contamination on clay soil microstructure", Clay Miner., 46(1), 47-58. https://doi.org/10.1180/claymin.2011.046.1.47.   DOI
51 Abousnina, R.M., Manalo, A., Shiau, J. and Lokuge, W. (2015), "Effects of light crude oil contamination on the physical and mechanical properties of fine sand", Soil Sediment Contamin. Int. J., 24(8), 833-845. https://doi.org/10.1080/15320383.2015.1058338.   DOI
52 Al-Sanad, H.A., Eid, W.K. and Ismael, N.F. (1995), "Geotechnical properties of oil-contaminated Kuwaiti sand", J. Geotech. Eng., 121(5), 407-412. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(407).   DOI
53 Kermani, M. and Ebadi, T. (2012), "The effect of oil contamination on the geotechnical properties of fine-grained soils", Soil Sediment Contamin. Int. J., 21(5), 655-671. https://doi.org/10.1080/15320383.2012.672486.   DOI