• Title/Summary/Keyword: ohmic

Search Result 614, Processing Time 0.028 seconds

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.

Mucilage Separation of Korean Yam Using Microparticulation/Air Classification Process (초미세분쇄/공기분급을 이용한 마의 점질물 분리)

  • Lee, Boo-Yong;Park, Dong-June;Ku, Kyung-Hyung;Kim, Hyun-Ku;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.596-602
    • /
    • 1994
  • To separate and concentrate mucilage from yam(Dioscorea batatas DECNE), yam was dried, microparticulated using impact mill and air-classified at different air classifying wheel speed(ACWS) in classifier. As ACWS increased from 5,000 rpm to 22,500 rpm, the contents of dietary fiber, protein and lipid of air classified microparticles(ACM) increased remarkably. Especially the ACM with ACWS over 15,000 rpm showed 36.41% dietary fiber and 16.66% protein. The dietary fiber and protein components were concentrated to $2.5{\sim}9.0$ times as compared with whole yam powder. Concomitantly the non-fibrous carbohydrate decreased from 88.31% to 16.84. The damaged starch(%), WSI and WAI of ACM of ACWS over 15,000 rpm were $1.5{\sim}3.0$ times higher than those of ACM under ACWS 15,000 rpm. The apparent viscosity of ACM was 0.0800 Pa s over ACWS 15,000 rpm and 0.0080 Pa s under ACWS 15,000 rpm. Judging from viscosity of ACM, the mucilage component of yam was concentrated to 10 times. In conclusion, the optimum process to separate and concentrate the mucilage from yam consisted of the microparticulation to $5{\sim}30{\mu}m$ and the air-classification at ACWS over 15,000 rpm.

  • PDF