DOI QR코드

DOI QR Code

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells

Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용

  • Jang, Jae Kyung (Energy and environmental division,, National academy of Agricultural Science, Rural Development Administration) ;
  • Ryou, Young Sun (Energy and environmental division,, National academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jong Goo (Energy and environmental division,, National academy of Agricultural Science, Rural Development Administration) ;
  • Kang, Youn Koo (Energy and environmental division,, National academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Eun Young (Dept. of environmental energy engineering, The university of Suwon)
  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 유영선 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김종구 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 강연구 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 이은영 (수원대학교 환경에너지공학과)
  • Received : 2012.10.17
  • Accepted : 2012.11.14
  • Published : 2012.12.28

Abstract

The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

미생물연료전지 운전을 할 때, 전압손실을 감소시키기 위한 다양한 방법들이 시도 되고 있다. 이 연구는 전해질과 저가의 금속이온을 전자수용체로 이용하여 전류발생을 확인하였다. 전해질로 phosphate buffer를 사용한 경우, 공기만 사용하였을 때보다 향상되었으며, 공기의 공급이 없이는 효과가 적은 것으로 나타났다. 전자수용체로 질산염(nitrate)을 사용하였을 때 산소를 공급하지 않았을 때보다 높은 전류발생을 보였으나 공기포화 물을 사용한 경우와 비교하여 전류발생이 향상되지는 않았다. 질산염을 양극부에 적용시에는 음극부와 양극부 모두 폐수처리가 가능한 시스템으로 구성하여 운전한다면 전류발생은 낮으나 서로 다른 폐수를 처리 할 수 있을 것으로 판단된다. 이 연구에서 적용한 3가지 방법 중에서 3가 철이온을 사용하였을 때 전류 발생이 가장 높았으며, 공기를 공급하지 않아도 전류 발생이 높게 유지되는 것으로 나타났다. 이것은 미생물연료전지의 규모를 증대시킬 때 폭기가 필요 없는 시스템을 구축할 수 있어 큰 장점으로 작용할 것으로 판단된다. 따라서 3가 철이온은 지구상에 가장 많은 금속 이온 중 하나로 용해도가 낮으나 저가의 3가 철이온을 잘 이용한다면 양극부 반응속도를 효율적으로 향상 시킬 수 있을 것으로 판단된다.

Keywords

References

  1. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-324. https://doi.org/10.1016/S0956-5663(02)00110-0
  2. Heijne, A. T., H. V. M. Hamelers, V. D. Wilde, R. A. Rozendal, and C. J. N. Buisman. 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cell. Environ. Sci. Technol. 40: 5200-5205. https://doi.org/10.1021/es0608545
  3. Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
  4. Jang, J. K., E. Y. Lee, Y. S. Ryou, S. H. Lee, J. Hwang, H. M. Lee, J. G. Kim, Y. K. Kang, and Y. H. Kim. 2011. Electricity production performance of single- and dualcathode microbial fuel cells coupled to carbon source and nitrate. Korean J. Microbiol. Biotechnol. 39: 382-386.
  5. Jang, J. K., J. E. Choi, Y. S. Ryou, S. H. Lee, and E. Y. Lee. 2012. Effect of ammonium and nitrate on current generation using dual-cathode microbial fuel cells. J. Microbiol. Biotechnol. 22: 270-273. https://doi.org/10.4014/jmb.1110.10040
  6. Jang, J. K., I. S. Chang, H. Y. Hwang, Y. F. Choo, J. Lee, K. S. Cho, B. H. Kim, and K. H. Nealson. 2010. Electricity generation coupled to oxidation of propionate in a microbial fuel cell. Biotechnol. Lett. 32: 79-85. https://doi.org/10.1007/s10529-009-0118-y
  7. Liu, H. and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040-4046. https://doi.org/10.1021/es0499344
  8. Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, and K. Rabaey. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40: 5181-5192. https://doi.org/10.1021/es0605016
  9. Logan, B. E., C. Murano, K. Scott, N. D. Gray, and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39: 942-952. https://doi.org/10.1016/j.watres.2004.11.019
  10. Logan, B. E. and J. M. Regan. 2006. Microbial fuel cellschallenges and applications. Environ. Sci. Technol. 40: 5172- 5180. https://doi.org/10.1021/es0627592
  11. Oh, S. and B. E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 70: 162-169. https://doi.org/10.1007/s00253-005-0066-y
  12. Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 14: 324-329.
  13. Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and O. H. Tuovinen. 2008. Cathodic limitation in microbial fuel cells: An overview. J. Power Sources. 180: 683-694 https://doi.org/10.1016/j.jpowsour.2008.02.074
  14. You, S., Q. Zhao, J. Zhang, J. Jiang, and S. Zhao. 2006. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources. 162: 1409-1415. https://doi.org/10.1016/j.jpowsour.2006.07.063
  15. Zhao, F., F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann. 2005. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7: 1405-1410. https://doi.org/10.1016/j.elecom.2005.09.032
  16. Zhao, F., F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann. 2006. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 40: 5193-5199. https://doi.org/10.1021/es060332p