• 제목/요약/키워드: offshore wind farms

검색결과 108건 처리시간 0.023초

Wind energy into the future: The challenge of deep-water wind farms

  • Ricciardelli, Francesco;Maienza, Carmela;Vardaroglu, Mustafa;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.321-340
    • /
    • 2021
  • In 2019, 5.6% of the total energy produced worldwide came from wind. Offshore wind generation is still a small portion of the total wind generation, yet its growth is exponential. Higher availability of sites, larger producibility and potentially lower environmental impacts make offshore wind generation attractive. On the other hand, as the water depth increases, fixed foundations are no more viable, and the new frontier is that of floating foundations. This paper brings an overview of why and how offshore wind energy should move deep water; it contains material from the Keynote Lecture given by the first author at the ACEM20/Structures20 Conference, held in Seoul in August 2020. The paper is organized into four sections: the first giving general concepts about wind generation especially offshore, the second and the third considering economic and technical aspects, respectively, of offshore deep-water wind generation, in the fourth, some challenges of floating offshore wind generation are presented and some conclusions are drawn.

풍력발전기의 에너지 비용 산출에 대한 고찰 (A Study on the Estimation Model of Cost of Energy for Wind Turbines)

  • 정태영;문석준;임채환
    • 신재생에너지
    • /
    • 제8권4호
    • /
    • pp.3-12
    • /
    • 2012
  • Large offshore wind farms have actively been developed in order to meet the needs for wind energy since the land-based wind farms have almost been fully developed especially in Europe. The key problem for the construction of offshore wind farms may be on the high cost of energy compared to land-based ones. NREL (National Renewable Energy Laboratory) has developed a spreadsheet-based tool to estimate the cost of wind-generated electricity from both land-based and offshore wind turbines. Component formulas for various kinds and scales of wind turbines were made using available field data. In this paper, this NREL estimation model is introduced and applied to the offshore wind turbines now under designing or in production in Korea, and the result is discussed.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

해상풍력 주민수용성 연구: 군산 말도를 중심으로 (A Study on Local Acceptance of Offshore Wind Farm: Focus on Maldo, Gunsan)

  • 이상혁;박재필
    • 신재생에너지
    • /
    • 제16권2호
    • /
    • pp.20-27
    • /
    • 2020
  • According to "The Renewable Energy 3020 Implementation Plan", offshore wind power accounts for 12 GW of the total new capacity of 48.7 GW. Like the south-west 2.5 GW offshore wind farm case, government-led development has had difficulty in securing the residents' acceptability. This study contributes to the study of local acceptance by analyzing the perceptions of Maldo residents. To this end, in-depth interviews were conducted with the head of a village and fishing village chief, and the entire contents of the interview were revised and analyzed. The cognitive structure of the stakeholders could be confirmed using semantic network analysis, which analyzes the network structure among words. Based on the analysis results, focusing on the identity frames related to the compensation process from previous national projects, gain vs. loss frames act as the dominant frame in terms of profits from offshore wind turbines. To invigorate offshore wind farms, the policy implications as follows. First, a negotiation organization should be organized to deal with strategic opposition by fishes. Second, installing offshore wind farms on a public water body will result in demands for compensation from various actors, and a licensed fishing territory as an offshore wind farm installation site should be considered.

해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성 (Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators)

  • 차태형;정원지;이현준
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

A Study on Traffic Safety Assessments for Fishing Vessels Near the Southwest Sea Offshore Wind Farm

  • Yoo, Sang-Lok;Jeong, Jae-Yong
    • 해양환경안전학회지
    • /
    • 제23권3호
    • /
    • pp.231-241
    • /
    • 2017
  • The purpose of this study was to analyze traffic safety assessments for fishing vessels near the southwest offshore wind farm. This study applied a collision model for safety assessment. It also involved a spatiotemporal analysis of vessels engaged in fishing to identify fishing hotspots around the offshore wind farm. This study used data from fishing vessel location transmission devices gathered over 1 year in 2014. As a result, in September, when the average number of vessels engaged in fishing is high, 62 ships were operating in fishing section 184-6 and 55 ships in section 184-6. In addition, in fishing sections 184-8 and 192-2, where an offshore wind farm was located, there were 55 and 38 ships operating, respectively. As the recovery period for a seaway near wind farm turbines is 55 years, it was determined that safety measures are required in order to reduce collision frequency while allowing fishing vessels to navigate through offshore wind farms. Meanwhile, the return period of Seaway B between the groups of generators considered was 184 years. A safety zone for offshore wind farms should be installed covering a distance of at least 0.3 NM from the boundary of turbines. Then, the collision return period was derived to be close to 100 years. Through this traffic safety assessment, it has been concluded that such measures would help prevent marine accidents.

서남해안 2.5GW 해상풍력단지 조성을 위한 설치 일정계획 (Installation Scheduling for the Development of Southwest Coast 2.5GW Offshore Wind Farm)

  • 고현정
    • 한국항만경제학회지
    • /
    • 제33권2호
    • /
    • pp.83-96
    • /
    • 2017
  • 지구 온난화에 대처하는 일환으로 신재생에너지 가운데 세계 각국은 해상풍력단지 개발에 투자를 집중하고 있다. 그러나 해상풍력단지 개발은 해상에서의 구조물 운송, 설치 등의 해상작업이 요구됨에 따라 투자비용이 육상풍력단지 보다 높은 단점이 있다. 특히 해상기상 여건으로 인한 설치기간 지연은 해상풍력단지 운영의 경제성에도 영향을 끼치는 요소이다. 따라서 본 연구에서는 국내 해상의 기상여건을 고려하여 해상풍력단지 조성의 최적 일정계획을 거시적 측면에서 분석하고자 하였다. 이를 위해 수리적 모델을 개발하였고, 이를 이용하여 국내 서남해안 2.5GW 해상풍력단지 조성사업에 적용하였다. 해상 기상여건은 기상청의 자료를 활용하였고, 모델에 사용된 입력 자료는 해외의 선행 사례를 바탕으로 현실성을 최대한 반영하고자 하였다. 그 결과 해상풍력터빈 35기를 설치하는데 6개월이 소요되는 것으로 분석되었다. 특히 겨울을 피하여 작업하는 것이 비용을 최소화할 수 있는 것으로 분석되었다.

A Study on the Application of Skirt Plates on Jacket Support Structures of Offshore Wind Turbines

  • Choi, Byeong-Ryoel;Choi, Han-Sik;Jo, Hyo-Jae;Lee, Sang-Hyep;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 2018
  • The Korea Offshore Wind Power (KOWP) is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW in the south-western coast of the country until 2019. Various types of support structures for offshore wind turbines have been proposed in the past. Nevertheless, in South Korea, jacket structures have in general, been applied as support structures for offshore wind turbines owing to the many accumulated experiences and know-how regarding this kind of support structure. The choice of offshore structure is mainly influenced by site conditions such as seabed soil type and sea environment during installation. In installing jacket sets on the seabed, the mudmat is necessary to maintain the equilibrium of the jacket without the aid of additional devices. Hence, this study proposes the installation of skirt plates underneath the bottom frame of jackets in order to improve the installation stability of jacket structures under rougher sea conditions. To confirm the effect of skirt plates, installation stability analyses considering overturning, sliding and bearing capacity have been performed. From the results, it is shown that jacket structures with skirt plates can contribute to improving the sliding stability of the structures of new wind power farms, while providing economic benefits.

K-RE100 이행에 필요한 국내해상풍력단지 누적 설치량 전망 연구 (Prospects of Cumulative Installed Power Capacity of Domestic Offshore Wind Projects for K-RE100)

  • 강홍구;김병하;김헌조;양창조;정해창
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.44-54
    • /
    • 2024
  • The objective of this study was to contribute to domestic offshore wind farms by reasonably predicting the expected completion time and installed power generation capacity of offshore wind projects in South Korea. Offshore wind power is drastically regarded as a core tool for clean energy transition and industrial decarbonization in the fight against the climate crisis globally. Especially in South Korea offshore wind power is the main tool in partaking in RE100 and K-RE100, and the Korean government aims to install 14.9 GW of offshore wind farms by 2030. However, this seems to have been significantly delayed due to the complex process of obtaining permits for offshore wind power in Korea. Thus, a reasonable prediction of power generation and a timeline for the final construction are imperative. To establish the delay time for permit licenses, classified location factors were included into site analysis. These factors comprised reviews of transmission and military operability, environmental impact assessment, maritime traffic safety examination, wind resource assessment and an analysis of current offshore wind projects. According to the analysis, the majority of offshore wind projects currently being developed in Korea are predicted to be delayed by 3-5 years as they are among the criteria included in key discussion points for obtaining permits. The cumulative installed power capacity and annual power generation after construction are expected to be 37 GW and 97 TWh respectively.