Installation Scheduling for the Development of Southwest Coast 2.5GW Offshore Wind Farm

서남해안 2.5GW 해상풍력단지 조성을 위한 설치 일정계획

  • Received : 2017.05.10
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

As a way to address global warming, among the renewable energy sources, there have been heavy investments worldwide for the development of offshore wind farms. However, such development has a drawback: investment costs are higher than those for onshore wind farms due to required operations such as offshore transportation and installation. In particular, delays in installation due to adverse maritime weather conditions are factors that affect the economics of offshore wind farms' operation. Therefore, in this study, we analyze the optimal schedule of the construction of an offshore wind farm from a macro perspective by considering the weather conditions in Korea. For this purpose, we develop a mathematical model and apply it to a 2.5 GW offshore wind farm project on the southwestern coast of the country. We use data from the Korea Meteorological Agency for maritime weather conditions and attempt to reflect the actual input data based on precedent cases overseas. The results show that it takes 6 months to install 35 offshore wind turbines. More specifically, it is pointed out that it is possible to minimize costs by not working in winter.

지구 온난화에 대처하는 일환으로 신재생에너지 가운데 세계 각국은 해상풍력단지 개발에 투자를 집중하고 있다. 그러나 해상풍력단지 개발은 해상에서의 구조물 운송, 설치 등의 해상작업이 요구됨에 따라 투자비용이 육상풍력단지 보다 높은 단점이 있다. 특히 해상기상 여건으로 인한 설치기간 지연은 해상풍력단지 운영의 경제성에도 영향을 끼치는 요소이다. 따라서 본 연구에서는 국내 해상의 기상여건을 고려하여 해상풍력단지 조성의 최적 일정계획을 거시적 측면에서 분석하고자 하였다. 이를 위해 수리적 모델을 개발하였고, 이를 이용하여 국내 서남해안 2.5GW 해상풍력단지 조성사업에 적용하였다. 해상 기상여건은 기상청의 자료를 활용하였고, 모델에 사용된 입력 자료는 해외의 선행 사례를 바탕으로 현실성을 최대한 반영하고자 하였다. 그 결과 해상풍력터빈 35기를 설치하는데 6개월이 소요되는 것으로 분석되었다. 특히 겨울을 피하여 작업하는 것이 비용을 최소화할 수 있는 것으로 분석되었다.

Keywords

References

  1. 고현정(2014), 국내 해상 풍력발전 전용항만 입지선정에 관한 연구, 한국항만경제학회지, 제29집 제4호, 53-80.
  2. Bis, I. and C. Stock(2010), Using collaborative virtual environments to plan wind energy installation", Renewable Energy, 35(10), 2348-2355. https://doi.org/10.1016/j.renene.2010.04.003
  3. Davey, E. and A. Nimmo(2012), Offshore wind cost reduction: Pathways study, Tech. Rep, The crow state, 16 New Burlington Place, London.
  4. EWEA(200), Oceans of opportunity - EWEA Offshore Report 2009, European Wind Energy Association.
  5. Gerdes, G., A. Tiedemann, and S. Zeelenberg(2010), Case study: European Offshore Wind Farms.
  6. Green R., and N. Vasilakos(2011), The economics of offshore wind, Energy Policy, 39(2), 496-502 https://doi.org/10.1016/j.enpol.2010.10.011
  7. IRENA(2012), Renewable Energy Technologies: Cost analysis series wind power, Tech. Rep., International Renewable Energy Agency.
  8. Lange, K., A. Rinne, and H.D. Haasis(2012), Planning maritime logistics concepts for offshore wind farms: A newly developed decision support system, In Lecture Notes in Computer Science, 7555 LNCS, 142-158.
  9. Muhabie, Y.K., J.D. Caprace, C. Petcu, and P. Rigo(2015), Improving the installation of offshore wind farms by the use of Discrete Event Simulation, The Proceedings of 5th World Maritime Technology Conference, USA.
  10. NoordzeeWind(2008), Offshore Windfarm Egmond aan Zee Gerneal Report.
  11. NREL(2013), Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy, , National Renewable Energy Laboratory.
  12. Scholz-Reiter, B., M. Lütyen, J. Heger, and A. Schweizer(2011), A MILP for installation scheduling of offshore wind farm, International Journal of Mathematical Models and Methods in Applied Sciences, 5(2), 371-378.
  13. AVIO Research at Alpha Ventus(2010), Interaktive Offshore-Windenergie Karte von Europa(http://rave.iset.uni-kassel.de).