• Title/Summary/Keyword: offshore applications

Search Result 109, Processing Time 0.026 seconds

Nonlinea Perturbation Method for Dynamic Structural Redesign (동적(動的) 구조(構造) 재설계(再說計)를 위한 비선형(非線形) 섭동법(攝動法))

  • Kyu-Nam,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 1989
  • Many mechanical systems including ships and/or offshore structures have poor dynamic response characteristics such as undesirable natural frequencies and undesirable mode shapes. It is mandatory to redesign the structure. In this paper a procedure for the dynamic redesign of an undamped structural system is presented. The method which uses a penalty function with a penalty term containing error in equilibrium for a given vibration mode may have a shortcoming. This method includes unconstrained eigenvector degrees of freedom as unknowns. In the work developed here, only constrained mode shape changes are used in the solution procedure, resulting in a reduction of the unnecessary calculations. Among the set of equations which characterizes the redesign of the structural systems, the under constrained problem is discussed here and formulated as an optimization problem, with an optimal criterion such as minimum change or minimum structural weight of the system. Four simple numerical applications illustrate the efficiency of the method. The method can be applied to the vibration problems of ships and/or offshore structures with an implementation of the commercial FE codes.

  • PDF

A Preliminary Study on the Ice-induced Fatigue in Ice-going Ships (빙 해역 운항선박의 빙 유기 피로문제에 대한 기초연구)

  • Hwang, Mi-Ran;Kwon, Yong-Hyun;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.303-309
    • /
    • 2016
  • As commercialization of the Arctic sea route and resource developments are regularized, demands for ice-breaking tankers, LNG carriers, and offshore plants are expected to increase. In addition, the existing ice-breaking cargo ships navigating in the ice-covered waters are worn out. Hence, the construction of new ships is likely to be undertaken for both current and long-term applications. The design of ships navigating in ice-covered waters demands conservative methods and strict development standards owing to the extreme cold and collision tendencies with ice floes and/or icebergs. ISO 19906 recently stated that a fatigue limit should be defined when designing Arctic offshore structures such that the ice-induced fatigue becomes one of the important design drivers. Thus, establishing systematic measures to mitigate ice-induced fatigue problems in ice-breaking ships are important from the viewpoint of having a competitive advantage. In this paper, the issues relating to ice-induced fatigue problems, based on data and published literature, are examined to describe the criticality of ice-induced fatigue. Potential fatigue damage possibilities are investigated using data measured in the Arctic Ocean (2013) and using the Korean icebreaker, ARAON.

Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine

  • Jieyan Chen;Chungkuk Jin;Moo-Hyun Kim
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.173-193
    • /
    • 2023
  • Reliable prediction of the motion of FOWT (floating offshore wind turbine) and associated mooring line tension is important in both design and operation/monitoring processes. In the present study, a 5MW OC4 semisubmersible wind turbine is numerically modeled, simulated, and analyzed by the open-source numerical tool, OpenFAST and in-house numerical tool, Charm3D-FAST. Another commercial-level program FASTv8-OrcaFlex is also introduced for comparison for selected cases. The three simulation programs solve the same turbine-floater-mooring coupled dynamics in time domain while there exist minor differences in the details of the program. Both the motions and mooring-line tensions are calculated and compared with the DeepCWind 1/50 scale model-testing results. The system identification between the numerical and physical models is checked through the static-offset test and free-decay test. Then the system motions and mooring tensions are systematically compared among the simulated results and measured values. Reasonably good agreements between the simulation and measurement are demonstrated for (i) white-noise random waves, (ii) typical random waves, and (iii) typical random waves with steady wind. Based on the comparison between numerical results and experimental data, the relative importance and role of the differences in the numerical methodologies of those three programs can be observed and interpreted. These comparative-study results may provide a certain confidence level and some insight of potential variability in motion and tension predictions for future FOWT designs and applications.

Surface Characteristics and Antifouling Performance of Inorganic MnOx-WO3-TiO2 Nanopowder for Self-polishing Copolymer Paint Applications (무기계 MnOx-WO3-TiO2 나노분말의 표면특성 및 자기마모형 수지 적용성 평가)

  • Shin, Byeongkil;Park, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.253-258
    • /
    • 2016
  • The $MnO_x-WO_3-TiO_2$ nanoscale powders were synthesized by sol-gel method in order to prevent the biological fouling on the ships and offshore structures. Powder characteristics and antifouling performance were investigated with respect to the crystalline, microstructure and surface property for application in self-polishing copolymer resins. The high antifouling activity of $TiO_2$-system biocide was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics. Based on their physio-chemical characterizations, the specific surface areas of powders were about $90m^2/g$ and the grain size was in the region 100 ~ 150 nm. Powder characteristics and surface properties were improved by the addition of $WO_3$. Antifouling performance were analyzed according to their surface properties and static immersion tests to determine the effects of the $TiO_2$-system compounds. The surface of 2 wt. % added sample was clean for 5 month. This may be attributed to the ability of $MnO_x-WO_3-TiO_2$ powders to act as a promoter in antifouling agents.

Environment Monitoring System Using RF Sensor (RF 센서를 이용한 해양 환경 관리 시스템)

  • Cha, Jin-Man;Park, Yeoun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.896-898
    • /
    • 2012
  • Recently, many countries are making efforts for the development of ocean resources because the necessity and importance of the ocean resources are increased. Underwater sensor networks have emerged as a very powerful technique for many applications, including monitoring, measurement, surveillance and control and envisioned to enable applications for oceanographic data collection, ocean sampling, environmental and pollution monitoring, offshore exploration, disaster prevention, tsunami and seaquake warning, assisted navigation, distributed tactical surveillance, and mine reconnaissance. The idea of applying sensor networks into underwater environments (i.e., forming underwater sensor networks) has received increasing interests in monitoring aquatic environments for scientific, environmental, commercial, safety, and military reasons. The data obtained by observing around the environment are wireless-transmitted by a radio set with various waves. According to the technical development of the medium set, some parameters restricted in observing the ocean have been gradually developed with the solution of power, distance, and corrosion and watertight by the seawater. The actual matters such as variety of required data, real-time observation, and data transmission, however, have not enough been improved just as various telecommunication systems on the land. In this paper, a wireless management system will be studied through a setup of wireless network available at fishery around the coast, real-time environmental observation with RF sensor, and data collection by a sensing device at the coastal areas.

  • PDF

Development of 33feet Class America's Cup Training CFRP Sailing Yacht for Marine and Leisure Applications (해양레저 분야 복합소재 적용 : 33피트급 아메리카스컵 훈련용 CFRP 세일링 요트 개발)

  • Seo, Hyoung-Seock;Jang, Ho-Yun;Lee, In-Won;Choi, Heung-Soap
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The purpose of this paper is to investigate the current trends of composite applications in the marine and leisure fields and to study the development of 33ft class America's cup training CFRP sailing yacht. In the field of marine and leisure, composite materials have been just used to marine and leisure structures, recently. Especially, since the America's cup of sailing yacht racing has required the light weight and high mechanical performance to make a high speed, CFRP have been recognized as the critical material to construct the racing yacht structures. To establish the process of CFRP racing yacht construction, the design optimizations and production methods of carbon mast and CFRP yacht hull were discussed in this paper. Finally, the constructed CFRP sailing yacht exhibited high performance as the racing yacht through the sailing test.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

A Study on High Temperature Tensile Property of Inconel 625 for Petroleum Application by Flux cored Arc Welding Process (석유시추용 인코넬 625강의 FCAW용접에 의한 고온인장 특성에 관한 연구)

  • PARK KEYUNG-DONG;AN DO-KEYUNG;JIN YOUNG-BEOM
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance tenn and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgiad characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics of inconel 625 are considered in FCAW weld associated with the several shielding gases($80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$) in viewpoint of welding productivity.

  • PDF

Topological optimized design considering dynamic problem with non-stochastic structural uncertainty

  • Lee, Dong-Kyu;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.79-94
    • /
    • 2010
  • This study shows how uncertainties of data like material properties quantitatively have an influence on structural topology optimization results for dynamic problems, here such as both optimal topology and shape. In general, the data uncertainties may result in uncertainties of structural behaviors like deflection or stress in structural analyses. Therefore optimization solutions naturally depend on the uncertainties in structural behaviors, since structural behaviors estimated by the structural analysis method like FEM need to execute optimization procedures. In order to quantitatively estimate the effect of data uncertainties on topology optimization solutions of dynamic problems, a so-called interval analysis is utilized in this study, and it is a well-known non-stochastic approach for uncertainty estimate. Topology optimization is realized by using a typical SIMP method, and for dynamic problems the optimization seeks to maximize the first-order eigenfrequency subject to a given material limit like a volume. Numerical applications topologically optimizing dynamic wall structures with varied supports are studied to verify the non-stochastic interval analysis is also suitable to estimate topology optimization results with dynamic problems.

A fuzzy controller based on incomplete differential ahead PID algorithm for a remotely operated vehicle

  • Cao, Junliang;Yin, Hanjun;Liu, Chunhu;Lian, Lian
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.237-255
    • /
    • 2013
  • In many applications, Remotely Operated Vehicles (ROVs) are required to be capable of course keeping, depth keeping, and height keeping. The ROV must be able to resist time-variant external forces and moments or frequent manipulate changes in some specified circumstances, which require the control system meets high precision, fast response, and good robustness. This study introduces a Fuzzy-Incomplete Derivative Ahead-PID (FIDA-PID) control system for a 500-meter ROV with four degrees of freedom (DOFs) to achieve course, depth, and height keeping. In the FIDA-PID control system, a Fuzzy Gain Scheduling Controller (FGSC) is designed on the basis of the incomplete derivative ahead PID control system to make the controller suitable for various situations. The parameters in the fuzzy scheme are optimized via many cycles of trial-and-error in a 10-meter-deep water tank. Significant improvements have been observed through simulation and experimental results within 4-DOFs.