• 제목/요약/키워드: off-line simulation

검색결과 248건 처리시간 0.032초

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

외부 장착물 분리 해석을 위한 Off-line 6-DOF 시뮬레이션 프로그램 개발 (Development of an Off-line 6-DOF Simulation Program for Store Separation Analysis)

  • 곽인근;신재화;이승수;최기영;현재수;김남균
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1252-1257
    • /
    • 2009
  • 항공기의 외부장착물 분리해석이 가능한 Off-line 6-DOF 시뮬레이션 프로그램을 개발 하였다. 개발한 프로그램은 풍동시험이나 CFD 해석을 통해 구축된 공력 데이터베이스를 이용하여 외부장착물의 분리 궤적을 예측할 수 있다. 공력 계수의 계산에는 flow angle 방법을 적용하였으며 분리 궤적 계산에는 사출력과 구속 조건의 적용이 가능하도록 하였다. 개발한 프로그램을 이용하여 군용항공기의 분리 궤적을 계산하였으며 이를 CTS 시험 결과와 비교하였다.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

화상정보를 이용한 로봇기구학의 오차 보정 (The compensation of kinematic differences of a robot using image information)

  • 이영진;이민철;안철기;손권;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1840-1843
    • /
    • 1997
  • The task environment of a robot is changing rapidly and task itself becomes complicated due to current industrial trends of multi-product and small lot size production. A convenient user-interfaced off-line programming(OLP) system is being developed in order to overcome the difficulty in teaching a robot task. Using the OLP system, operators can easily teach robot tasks off-line and verify feasibility of the task through simulation of a robot prior to the on-line execution. However, some task errors are inevitable by kinematic differences between the robot model in OLP and the actual robot. Three calibration methods using image information are proposed to compensate the kinematic differences. These methods compose of a relative position vector method, three point compensation method, and base line compensation method. To compensate a kinematic differences the vision system with one monochrome camera is used in the calibration experiment.

  • PDF

온/오프라인 시뮬레이션 툴을 이용한 계통연계형 인버터의 LCL 필터 특성 분석비교 (Analytic Comparison of LCL Filter Characteristics of Three-phase Grid-connected Inverter by On/Off-line Simulation Tools)

  • 이강;차한주
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.16-22
    • /
    • 2020
  • 본 논문에서는 계통연계형 인버터용 LCL 필터 특성을 학계와 산업계의 대표적인 오프라인, 온라인 시뮬레이션 도구를 적용하여 LCL 필터와 L 필터의 차이점을 비교 분석하였다. 논문의 연구방법은 비교 분석 및 검증 방법을 적용하여 먼저 LCL 필터를 포함한 계통연계형 인버터 시스템의 수학적 분석과 모델링한 후 오프라인 시뮬레이션 도구로 시뮬레이션한 결과를 수학적 이론값과 비교하였으며, 마지막으로 실시간 시뮬레이터를 사용한 실험을 통한 검증과정으로 구성하였다. 3개의 시뮬레이션 툴을 사용하여 LCL 필터를 모델링 및 시뮬레이션하고 LCL 필터의 고주파 고조파에 대해 필터링 효과를 확인하였다. 먼저, LCL 필터의 전달 함수와 관련 수식을 소개하였으며, 이를 바탕으로 보드선도로 그 특성을 분석하였다. 또한 LCL 필터의 매개 변수에 따라 PSIM 및 MATLAB의 오프라인 시뮬레이션과 FFT를 통해 필터 특성을 확인하였다. 마지막으로 실시간 시뮬레이터인 Typhoon HIL402와 DSP 제어기를 연결하여 온라인 시뮬레이션 결과와의 일관성을 확인하였으며 LCL 필터의 필터링 특성을 시험으로 검증하였다.

FMS 스케쥴링을 위한 Priority 함수의 자동 생성에 관한 연구

  • 김창욱;신호섭;장성용;박진우
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1997년도 춘계 학술대회 발표집
    • /
    • pp.93-99
    • /
    • 1997
  • Most of the past studies on FMS scheduling problems may be classified into two classes, namely off-line scheduling and on-line scheduling approach. The off-line scheduling methods are used mostly for FMS planning purposes and may not be useful real time control of FMSs, because it generates solutions only after a relatively long period of time. The on-line scheduling methods are used extensively for dynamic real-time control of FMSs although the performance of on-line scheduling algorithms tends vary dramatically depending on various configurations of FMS. Current study is about finding a better on-line scheduling rules for FMS operations. In this study, we propose a method to create priority functions that can be used in setting relative priorities among jobs or machines in on-line scheduling. The priority functions reflect the configuration of FMS and the user-defined objective functions. The priority functions are generated from diverse dispatching rules which may be considered a special priority functions by themselves, and used to determine the order of processing and transporting parts. Overall system of our work consists of two modules, the Priority Function Evolution Module (PFEM) and the FMS Simulation Module (FMSSM). The PFEM generates new priority functions using input variables from a terminal set and primitive functions from a function set by genetic programming. And the FMSSM evaluates each priority function by a simulation methodology. Based on these evaluated values, the PFEM creates new priority functions by using crossover, mutation operation and probabilistic selection. These processes are iteratively applied until the termination criteria are satisfied. We considered various configurations and objective functions of FMSs in our study, and we seek a workable solution rather than an optimum or near optimum solution in scheduling FMS operations in real time. To verify the viability of our approach, experimental results of our model on real FMS are included.

  • PDF

CTF-F 구조를 가진 3D NAND Flash Memory에서 Gate Controllability 분석 (The Analysis of Gate Controllability in 3D NAND Flash Memory with CTF-F Structure)

  • 김범수;이종원;강명곤
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.774-777
    • /
    • 2021
  • 본 논문은 Charge Trap Flash using Ferroelectric(CTF-F) 구조를 가진 3D NAND Flash Memory gate controllability에 대해 분석했다. Ferroelectric 물질인 HfO2는 polarization 이외에도 high-k 라는 특징을 가진다. 이러한 특징으로 인해 CTF-F 구조에서 gate controllability가 증가하고 Bit Line(BL)에서 on/off 전류특성이 향상된다. Simulation 결과 CTF-F 구조에서 String Select Line(SSL)과 Ground Select Line(GSL)의 채널길이는 100 nm로 기존 CTF 구조에 비해 33% 감소했지만 거의 동일한 off current 특성을 확인했다. 또한 program operation에서 channel에 inversion layer가 더 강하게 형성되어 BL을 통한 전류가 약 2배 증가한 것을 확인했다.

대기모드 기능을 내장한 전원 장치 제어용 PWM IC 설계 (Design of PWM IC with Standby Mode Control Function for SMPS)

  • 박현일;김형우;김기현;서길수;한석붕
    • 한국전기전자재료학회논문지
    • /
    • 제21권4호
    • /
    • pp.289-295
    • /
    • 2008
  • In this paper, we designed the off-line PWM(Pulse width modulation) control IC for flyback type power converter to reduce the standby power consumption. In normal state, this off-line PWM IC generates the output pulse with $40\sim60kHz$ frequency and duty ratio of $20\sim88%$. When SMPS operates in standby mode, this IC generates the output pulse with 33kHz frequency and duty ratio of 1 %. SPICE simulation was performed to verify the standby power consumption of the power converter with designed of-line PWM IC. Power converter with designed off-line PWM IC consumes less than 0.3W when it operates in standby mode condition.

고주파에서 높은 신호 격리도를 갖는 접촉식 RF MEMS 스위치의 설계 (Design of Ohmic Contact RF MEMS Silicon Switch with High Isolation at High Frequencies)

  • 이용석;장윤호;김정무;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1509_1510
    • /
    • 2009
  • This paper presents the design and simulation results of ohmic contact RF MEMS silicon switch with a high isolation at high frequencies along with the position of a contact part, initial off-state and intermediate off-state including the state where a contact part is placed right over a signal line of coplanar waveguide (CPW). The ohmic contact part is connected with comb drives made of high resistivity single crystalline silicon. The released contact part is $30{\mu}m$ apart from the edge of signal line on the glass substrate along the lateral direction (x-direction) at initial off-state. The electrostatic force of the comb electrode creates the x-directional movement thus initial state is converted to the intermediate off-state. The initial off-state of the switch results in isolations of -31 dB, -24 dB and reflections of -0.45 dB, -0.67 dB at 50 GHz and 110 GHz, respectively. It shows the isolation degradation when the contact part moves right over the signal line of CPW like an initial off-state of a conventional MEMS switch. The isolations and reflections are -31 dB, -24 dB and -0.50 dB, -1.31 dB at 50 GHz and 110 GHz, respectively at the intermediate off-state.

  • PDF

Analysis of Strategies for Installing Parallel Stations in Assembly Systems

  • Leung, John W.K.;Lai, K.K.
    • Industrial Engineering and Management Systems
    • /
    • 제4권2호
    • /
    • pp.117-122
    • /
    • 2005
  • An assembly system (AS), a valuable tool for mass production, is generally composed of a number of workstations and a transport system. While the workstations perform some preplanned operations, the transport system moves the assemblies by special designed pallets from one station to another. One common problem associated with automatic assembly systems is that some assembly operations may have relatively long cycle times. As a consequence, the productivity, as determined by the operations with the longest cycle time, can be reduced significantly. Therefore, special forms of parallel workstations were developed to improve the performance of an assembly system. In this paper, three most commonly used parallel stations: on-line, off-line and tunnel-gated stations in a free transfer assembly system are studied via discrete event simulation. Our findings revealed that the off-line parallel system has the best performance because the two independent parallel stations can lower the buffer requirement; reduce the sensitivity to variability of processing time and balance of a line. On-line parallel systems were found to have a relatively poor performance, because the operations of two parallel stations block each other, and higher buffer capacity is required to achieve similar capacity. The tunnel-gated system was more efficient than the on-line system since the first parallel station can operate independently. More importantly, we have quantified the productivity of the three different strategies mentioned. Engineers can choose the optimal strategies for installing parallel stations under their working environment.