• Title/Summary/Keyword: odor threshold

Search Result 53, Processing Time 0.026 seconds

Determination of geosmin and 2-MIB in Nakdong River using headspace solid phase microextraction and GC-MS (HS-SPME-GC/MS를 이용한 낙동강 수계 하천수 중 조류기원성 냄새물질 분석)

  • Lee, Injung;Lee, Kyoung-Lak;Lim, Tae-Hyo;Park, Jeong-Ja;Cheon, Seuk
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • Geosmin and 2-methylisoborneol (2-MIB) are volatile organic compounds responsible for the majority of unpleasant taste and odor events in drinking water. Geosmin and 2-MIB are byproducts of blue-green algae (cyanobacteria) with musty and earthy odors. These compounds have odor threshold concentration at ng/L levels. It is needed to develop a sensitive method for determination of geosmin and 2-MIB to control the quality of drinking water. In this study, geosmin and 2-MIB in water samples were determined by gas chromatography-mass spectrometry (GC-MS) with headspace-solid phase microextraction (HS-SMPE). The detection limits of this method were 1.072 ng/L and 1.021 ng/L for geosmin and 2-MIB, respectively. Good accuracy and precision was also obtained by this method. Concentrations of the two compounds were measured in raw waters from Nakdong River in the cyanobacterial blooming season. Water bloom formed by cyanobacteria has been occurred currently in Nakdong River. It is needed to investigate the concentrations of geosmin and 2-MIB to control the quality of drinking water from Nakdong River. Both geosmin and 2-MIB were detected in raw waters from Nakdong River at concentrations ranging from 4 to 24 ng/L and 6 to 16 ng/L, respectively.

A Study on the guidelines for Tasty and Healthy Drinking Water Supply (청정급수를 위한 쾌적수질기준 설정에 관한 기초조사 연구)

  • 금영환;문량조;유재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.106-125
    • /
    • 1995
  • Recently, in accordance with elevation of life style and economics, the public demand became increasingly concerned about drinking water quality. Without an adequate supply of safe water, healthy and comfortable life could not exist. Therefore, the purpose of this study is to provide the guidelines and the basic informations to enable supply of clean, tasty and healthy drinking water acceptable for various demands. We analyzed the quality of tap water, mineral water, purified tap water using home tap water purifier. And we researched on the sense of the public complaint over the tap water. We proposed several items relating to the comfortableness of water quality and the target value. Also we presented a case of water supply system for purity and the points at problem The items and target value are as follows 1. turbidity : not more than 1 degree 2. dry residue : $30~200{\;}mg/{\ell}$ 3. hardness : $10~100mg/{\ell}$ 4. free carbon dioxide : not more than $20mg/{\ell}$ 5. $KMnO_{4}$ consumption not more than $3mg/{\ell}$ 6. odor threshold not abnormal 7. residual chlorine : not more than $0.4mg/{\ell}$ 8. water temperature' not more than $20^{\circ}C$ 9. manganese : not more than $0.01mg/{\ell}$ 10. iron : not more than $0.02mg/{\ell}$ 11. aluminum : not more than $0.1mg/{\ell}$

  • PDF

Measurement of Low Hydrogen Sulfide Concentrations in the Coastal Area Near the Ulsan Industrial Complex (울산 산업단지인근 해변지역에서의 저 농도 황화수소 측정)

  • Yu, Mee Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1555-1562
    • /
    • 2016
  • Concentrations of hydrogen sulfide in ambient air have been measured from January 2014 to June 2016 in a coastal area near the Ulsan National Industrial Complex. The measurement sites were 1 km, 2.6 km, 5.6 km, and 20 km away from a kraft pulp mill, which is located at the most southern edge of the complex. Concentrations above 0.4 ppb were monitored every 5 min and the highest concentration of the day was determined. From a total of 775 measurement days, hydrogen sulfide concentrations > 20 ppb were recorded on 36 and 38 days at the measurement site closest to the mill and the residential area 2.6 km away from the mill, respectively. At the site farthest from the mill, the concentrations were always 20 ppb lower than the malodor regulation for the residential area but sometimes higher than the odor recognition threshold for hydrogen sulfide. Although several emission sources of hydrogen sulfide have been published in the Pollutant Release and Transfer Register of Korea, the kraft pulp mill is considered to be the biggest contributor of atmospheric hydrogen sulfide in the southern coastal area of Ulsan.

Quantification of Odorants from Animal Husbandry using Solid-phase Microextraction (고상(固相) 미세 추출법에 의한 축산 관리시설에서 발생하는 악취성 가스 화합물의 정량적 평가)

  • Kim, Jae-Hyuck;Choi, Hong-Lim;Kown, So-Young;Lim, Hong-Lae;McConnell, Laura L.;Arispe, Susana;Park, Chul-Hwi;Kim, Hyun-Ook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2006
  • Offensive odor from CAFO(concentrated animal feeding operation) and its control have become a significant issue in Korea. Control of odors from the CAFO requires to identify major odorant and their generation mechanisms. In this study, an easy method to collect gas sample and to quantify its odorants is proposed. The method involves on-site odorant extraction with solid-phase microextraction and quantitation with GC/MSD or GC/FID. Analytes of the current study include: trimethylamine(TMA), carbon disulfide($CS_2$), dimethyl sulfide(DMS), dimethyl disulfide(DMDS), acetic acid(AA), propionic acid(PA) and n-butyric acid(BA). The resulting linearity($R^2$) of calibration curve for each analyte was good over the range from several ppbv to ppmv; 0.984 for TMA(0.056-1.437), 0.996 for $CS_2$(0.039-0.999), 0.994 for DMS(0.029-0.756), 0.995 for DMDS(0.024-0.623), 0.992 for AA(0.068-1.314), 0.955 for PA(0.047-0.940), and 0.976 for BA(0.036-0.712). Method detection limits were 5.67, 6.39, 5.78, 25.2, 0.098, 0.363 and 0.099 ppbv for AA, PA, BA, TMA, DMS, $CS_2$, and DMDS, respectively. With the developed method, odorants from poultry, swine, and cattle barns were analysed. All the compounds but DMDS were detected from the sample collected in the poultry barn, and their levels exceeded the representative published human olfactory threshold.

VOC/HAPs Emission Characteristics & Adsorption Evaluation for Paint Products in Busan Area (부산지역 페인트제조시설의 VOC/HAPs 배출특성 및 흡착능 평가)

  • Song, Bok-Joo;Lee, Seung-Min;Cho, Gab-Je;Cho, Jeong-Gu;You, Pyung-Jong;Kim, Gi-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.316-325
    • /
    • 2012
  • In this study, we suggested adequate control technology by analyzing emission process and main chemical of VOC/HAPs generated from four paint factories in Busan area. And we estimated whether Kapok fiber, which is a natural material, can be commercially used for an absorbent by testing adsorption ability. As a result of this sturdy, above 60% of VOC/HAPs was volatilized and dispersed inside the working place without conducting control system of facilities during manufacturing paints. Concentration profile of VOC/HAPs, which is volatile naturally outside the factories, is surveyed above 70% at Toluene, Ethylbenzene, and Xylene. And a result of evaluation of odor attribution level about the component whose Odor Threshold is known, it is estimated that major cause material of A, B, C factories is Toluene and that of D factory is m/p-Xylene. And that result presented design arguments such as facilities specifications, activated carbon filling volume, and replace cycle of activated carbon as control technology. Also, that result presented emission process improvement such as adsorption of central-controlled ventilation device, installation of inlet flenge, and potable cleaning process. The rate of pollutant adsorption of Kapok fiber, which is natural material, is indicated about 91.9%, 66.7%. That result validated the possibility as replacement of activated carbon.

Organoleptic Sweetness of Aspartame as Affected by Temperature, pH, Salt and Quinine (아스파탐의 단맛에 온도, pH, 소금, quinine이 미치는 영향)

  • Chung, Nam-Yong;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.162-168
    • /
    • 1996
  • Effects of temperature, pH and addition of NaCl and quinine on sweetness and recognition threshold of aspartame were investigated. Changes in flavor of some foods were also studied when aspartame was added. The sweetness of 0.02% aspartame, the equi-sweetness of 4.3% sugar, was organoleptically evaluated by multiple comparison test at variouse range of temperature ($4^{\circ}$, $20^{\circ}$, $40^{\circ}$, $60^{\circ}$ and $80^{\circ}C$), pH (3.0, 4.5, 6.0 and 7.5), NaCl (0.5, 1.0, 1.5 and 2.0%) and quinine (0.001, 0.003 and 0.005%). The highest sweetness was obtained at $20^{\circ}C$ and pH 3.0-4.5. Addition of NaCl at 0.5% level showed the highest sweetness which was decreased thereafter. The sweetness was significantly decreased by the addition of quinine. The recognition threshold of aspartame was the lowest at $20^{\circ}C$ and pH 3.0-4.5. Lower in bitterness and higher In ginseng flavor were noted in ginseng tea with aspartame than in that without aspartame. Improved roasted flavor and decreased undesirable odor and taste were resulted in soymilk with the addition of aspartame. The flavors of orange, apple and strawberry were enhanced by aspartame in orange juice, apple juice and strawberry juice, respectively.

  • PDF

Emission Characteristics of Odorous Sulfur Gases from Food Types: A Case Study on Boiled Egg, Milk, Canned Meat, and Strawberry (음식물의 악취 황화합물 발생특성 조사: 계란, 우유, 고기통조림, 딸기에 대한 사례 연구)

  • Kim, Bo-Won;Ahn, Jeong-Hyeon;Kim, Ki-Hyun;Jo, Sang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.615-624
    • /
    • 2013
  • In this study, the emission patterns of reduced sulfur compounds (RSC) were investigated using four different types of food samples (boiled egg, milk, canned meat and strawberry) between fresh and decaying stages. To this end, the concentrations of RSCs were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. Four sulfur compounds ($H_2S$, $CH_3SH$, DMS and DMDS) were selected as target compounds along with two reference compounds ($CS_2$ and $SO_2$). Their concentrations were quantified using GC-PFPD equipped with thermal desorption (TD) system. The boiled egg showed the highest concentration of $H_2S$ (3,655 ppb) at D-1, while $CH_3SH$ reached its maximum value of 64.4~78.5 ppb after 3 days. In milk samples, concentration of $CH_3SH$, DMS, and DMDS went up to 487, 16.3, and 578 ppb, respectively with the progress of decay (D-9). In case of canned meat, concentration of $H_2S$ and $CH_3SH$ peaked in the beginning (D-0) such as 345 and 66.6 ppb. In case of strawberry, $CH_3SH$ and DMDS showed the maximum concentrations 135 and 50.5 ppb at D-1, respectively. The olfactometry dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test showed similar patterns when sum of odor intensity (SOI) was derived via conversion of odorant concentration data. The results of this study confirm that the time of strong RSC emissions is distinguished for each food type between fresh (e.g., strawberries) and decaying conditions (e.g., milk).

Emission Characteristics of Odorous Gases with the Decay of Albumin and Yolk of Boiled Egg (삶은 달걀의 부패에 따른 부위별 냄새물질의 발생특성 연구)

  • Kim, Bo-Won;Kim, Ki-Hyun;Kim, Yong-Hyun;Ahn, Jeong-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.95-109
    • /
    • 2014
  • In this study, the concentration of odorants released from albumin (EA) and yolk (EY) portions of boiled egg samples were determined as a function of storage time. The concentrations were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. As such, odorants produced during both fresh and decay conditions were measured through time. A total of 19 compounds were selected as the main target odorants along with 12 reference compounds. GC-MS (for VOC) and GC-PFPD system (for sulfur gases) equipped with thermal desorption (TD) system were employed for odorant analysis in this work. The initial concentrations measured from the chamber system were converted into flux terms ($ng{\cdot}g^{-1}{\cdot}min^{-1}$). The EA showed the highest concentration of $H_2S$ (234 $ng{\cdot}g^{-1}{\cdot}min^{-1}$) at EA-0, and the concentrations of AT (Acetone) was also seen clearly in the range of 11.7 (EA-0) to 58.6 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9). The EY showed similar patterns. EtAl (Ethyl alcohol) increased 9.47 (EA-1) to 96.7 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9) in EA samples. Ketone, alcohol, sulfur groups generally exhibited high concentrations compared to other odorants. These data were also compared in relation to olfactometry related dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test and sum of odor intensity (SOI).

Effect of aerobically treated manure on odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.308-316
    • /
    • 2022
  • Objective: This study was conducted to determine reduction of various odorous materials from a swine farm equipped with a continuous pit recirculation system (CPRS) with aerobically treated liquid manure. Methods: The CPRS is used in swine farms in South Korea, primarily to improve air quality in pig houses. In this study, CPRS consists of a manure aerobic treatment system and a fit recirculation system; the solid fraction is separated and composted, whereas the aerobically treated liquid fraction (290.0%±21.0% per day of total stored swine slurry) is continuously returned to the pit. Four confinement pig barns in three piggery farms were used; two were equipped with CPRS and the other two operated a slurry pit under the slatted floor. Results: All chemical contents of slurry pit manure in the control were greater than those of slurry pit manure in the CRPS treatment (p<0.05). Electrical conductivity and pH contents did not differ among treatments. The biological oxygen demand of the slurry pit treatment was greater than that of the other treatments (p<0.05). Total nitrogen, total phosphorus, and ammonia nitrogen contents of the slurry pit treatment were greater than those of other treatments (p<0.05). Odor intensity of the CPRS treatment was lower than that of the control at indoor, exhaust, and outside sampling points (p<0.05). The temperature and carbon dioxide of the CPRS treatment in the pig barn was significantly lower than those of control (p<0.05). All measured odorous material contents of the CPRS group were significantly lower than those of the control group (p<0.05). Conclusion: The CPRS application in pig farms is considered a good option as it continuously reduces the organic load of animal manure and lowers the average odorant concentration below the threshold of detecting odorous materials.

Emission characteristics of odor from salted food materials using Spam (염처리 음식물의 냄새성분 배출특성에 대한 연구: 스팸을 중심으로)

  • Lee, Min-Hee;Kim, Ki-Hyun;Kim, Yong-Hyun;Jo, Sang-Hee
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.447-459
    • /
    • 2012
  • In this study, the emission characteristics of volatile and odorant species released from salted meat product (Spam) was investigated as a function of time. Gas samples released from Spam samples were analyzed for volatile organic compounds (VOC) and sulfur compounds (RSC) at five different times for the elapsed (E) days of 0, 1, 3, 6, and 9 (E-0 to E-9) by GC/MS and GC/PFPD system, respectively. Results indicated that reduced sulfur, aldehyde, and ketone groups were the dominant odorants. Especially, hydrogen sulfide was the predominant in concentration and odor activity value (OAV) during the fresh stage. Its concentration was 1465 ${\mu}g/m^3$ (60.0% of the total mass) in E-0 and 455 ${\mu}g/m^3$ (28.0%) in E-1, while its OAV was 19.4 (78.3%: E-0) and 6.02 (41.7%: E-1). On the other hand, the concentration of acetone showed the maximum values in the decaying stage (E-3: 451 (43.2%), E-6: 369 (64.2%), and E-9: 1150 ${\mu}g/m^3$ (70.2%)). Furthermore, the concentration of 2,3-butanedione was also detected considerably from decaying sample (E-3: 17.6 (1.68%), E-6: 16.1 (2.80%), and E-9: 179 ${\mu}g/m^3$ (10.9%)). However, OAV of acetone was insignificant (<0.01%) in the decaying stage, while that of 2,3-butanedione was relatively high in the range of 1.14-11.6 (14.5-76.2% of ${\Sigma}OAV$). It thus confirmed that the major odorant groups generated from Spam samples changed with the progress of decay such as sulfur (fresh stage), aldehyde (intermediate stage), and ketone compounds (decaying stage).