• Title/Summary/Keyword: odontoblastic differentiation

Search Result 16, Processing Time 0.023 seconds

MAPK Signal Pathways in Regulation of Odontoblastic Differentiation by Induction of HO-1 in Human Dental Pulp Cells (MAPK 경로를 통한 HO-1과 분화 표지자 발현)

  • Kim, Sun-Ju
    • Journal of dental hygiene science
    • /
    • v.10 no.4
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to examine the MAPK signaling pathways involved in regulation of HO-1 and the odontoblast differentiation markers during the odontoblastic differentiation for HDPCs. We evaluated cell growth by MTT assay and differentiation marker mRNA expression by RT-PCR. When the cells were treated with p38 inhibitor (SB203580, $10{\mu}M$), JNK inhibitor (SP600125, $10{\mu}M$), and ERK inhibitor (PD98059, $20{\mu}M$) for 7 days, cell growth and expression of HO-1 and differentiation makers were significantly decreased in HDPCs. Our results suggest that odontoblastic differentiation is positively regulated by HO-1 induction in HDPCs via ERK, JNK, and p38 signaling pathways. Thus, pharmacological HO-1 induction might represent a potent therapeutic approach for pulp capping and the regeneration of HDPCs.

MicroRNA-27 Promotes Odontoblast Differentiation via Wnt1 Signaling

  • Cho, Ji-Ho;Kim, Su-Gwan;Park, Byung-Sun;Go, Dae-San;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.197-204
    • /
    • 2015
  • MicroRNA (miRNA, miR) is essential in regulating cell differentiation either by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNA in odontoblastic cell differentiation is still unclear. In this study, we examined the molecular mechanism of miR-27-mediated regulation of odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. The results of the present study demonstrated that the miR-27 expression increases significantly during MDPC-23 odontoblastic cell differentiation. Furthermore, miR-27 up-regulation promotes the differentiation of MDPC-23 cells and accelerates mineralization without cell proliferation. The over-expression of miR-27 significantly increased the expression levels of Wnt1 mRNA and protein. In addition, the results of target gene prediction revealed that Wnt1 mRNA has an miR-27 binding site in its 3'UTR, and is increased by miR-27. These results suggested that miR-27 promotes MDPC-23 odontoblastic cell differentiation by targeting Wnt1 signaling. Therefore, miR-27 is a critical odontoblastic differentiation molecular target for the development of miRNA based therapeutic agents in dental medicine.

Changes in SIRT gene expression during odontoblastic differentiation of human dental pulp cells

  • Jang, Young-Eun;Go, Su-Hee;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, In-Nam;Oh, Won-Mann;Hwang, Yun-Chan
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.223-228
    • /
    • 2015
  • Objectives: The aim of this study was to investigate the expression of 7 different sirtuin genes (SIRT1-SIRT7) in human dental pulp cells (HDPCs), and to determine the role of SIRTs in the odontoblastic differentiation potential of HDPCs. Materials and Methods: HDPCs were isolated from freshly extracted third molar teeth of healthy patients and cultulred in odontoblastic differentiation inducing media. Osteocalcin (OCN) and dentin sialophosphoprotein (DSPP) expression was analyzed to evaluate the odontoblastic differentiation of HDPCs by reverse transcription-polymerase chain reaction (RT-PCR), while alizarin red staining was used for the mineralization assay. To investigate the expression of SIRTs during odontoblastic differentiation of HDPCs, real time PCR was also performed with RT-PCR. Results: During the culture of HDPCs in the differentiation inducing media, OCN, and DSPP mRNA expressions were increased. Mineralized nodule formation was also increased in the 14 days culture. All seven SIRT genes were expressed during the odontogenic induction period. SIRT4 expression was increased in a time-dependent manner. Conclusions: Our study identified the expression of seven different SIRT genes in HDPCs, and revealed that SIRT4 could exert an influence on the odontoblast differentiation process. Further studies are needed to determine the effects of other SIRTs on the odontogenic potential of HDPCs.

Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation (인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할)

  • Lee, Hwa-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Although it has been reported that lysyl oxidase (LOX) is involved in odontoblastic differentiation, the role of LOX on odontoblastic differentiation by hydrogen peroxide ($H_2O_2$) have not been clarified. In the present study, we investigated whether $H_2O_2$, reactive oxygen species (ROS), is modulated the messenger RNA (mRNA) expression and activity of LOX during odontoblastic differentiation of human dental pulp (HDP) cells. The mRNA expression was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, and LOX enzyme activity was measured by high sensitive fluorescent assay. Expression of the odontoblastic differentiation marker genes were assessed in the presence and absence of specific small interfering RNAs (siRNAs) of the LOX and LOXL. The $H_2O_2$-induced mRNA expression of LOX family was significant reduction of LOX, LOXL, and LOXL3 mRNA levels in HDP cells. LOX enzyme activity was increased at $H_2O_2$ 0.3 mM for 24 hours. The mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) was inhibited by LOX- and LOXL-specific siRNAs whereas the mRNA expression of dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) was inhibited by LOX-specific siRNA. In LOX enzyme activity, siRNA-induced knockdown of both LOX and LOXL inhibited the total amine oxidase activity in HDP cells, as in the case of mRNA expression. In conclusion, the essential role of $H_2O_2$ on odontoblastic differentiation suggests that its regulation by LOX may have pharmacologic importance in HDP cells.

Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Seo, Jeong-Yeon;Lim, HyangI;Kim, Tae-Hyeon;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Park, Joo-Cheol;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC-23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

Effect of Metformin on Cell Growth and Differentiation in Cultured Odontoblasts

  • Oh, Chang Young;Kim, Su-Gwan;Go, Dae-San;Yu, Sun-Kyoung;Kim, Tae-Hoon;Kim, Chun Sung;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • Metformin (1,1-dimethylbiguanide hydrochloride), derived from French lilac (Galega officinalis), is a first-line anti-diabetic drug prescribed for patients with type 2 diabetes. However, the role of metformin in odontoblastic cell differentiation is still unclear. This study therefore undertook to examine the effect of metformin on regulating odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. As compared to controls, metformin significantly accelerated the mineralization, significantly increased and accelerated the expressions of ALP and Col I mRNAs, and significantly increased the accelerated expressions of DSPP and DMP-1 mRNAs, during differentiation of MDPC-23 cells. There was no alteration in cell proliferation of MDPC-23 cells, on exposure to metformin. These results suggest that the effect of metformin on MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells, facilitates the odontoblast differentiation and mineralization, without altering the cell proliferation.

Role of Lysyl Oxidase Family during Odontoblastic Differentiation of Human Dental Pulp Cells Induced with Odontogenic Supplement (인간치수세포에서 상아모세포의 분화과정 동안 Lysyl Oxidase Family의 역할)

  • Lee, Hwa-Jeong;Han, Soo-Yeon
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.296-303
    • /
    • 2013
  • Lysyl oxidase (LOX), extracellular matrix enzyme, is catalyzing lysine-derived crosslinks in collagen and elastin. Recently, several LOX-like proteins (LOXL, LOXL2, LOXL3 and LOXL4) have been identified in human but their specific functions are still largely unknown. The purpose of this study was to evaluate the function of the LOX family genes during odontoblastic differentiation of human dental pulp (HDP) cells induced with odontogenic supplement (OS). The messenger RNA (mRNA) expression of LOX family genes and differentiation markers was assessed by reverse transcriptase polymerase chain reaction analysis (RT-PCR). The formation of mineralization nodules was evaluated by alrizarin red S staining. Amine oxidase activity of HDP cells was measured by peroxidase-coupled fluormetric assay. The expressions of differentiation markers, such as alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), dentin matrix protein1 (DMP1), dentin sialophosphoprotein (DSPP) in HDP cells were increased after treatment with OS media. The LOX and LOXL mRNA expression were gradually increased in OS media, whereas LOX enzyme activities were markedly detected on day 7. The mRNA expression and LOX enzyme activity of collagen type I was very similar to the pattern of LOX gene. In this study, the expression of LOX and its isoforms, and activity of LOX were highly regulated during odontoblastic differentiation. Thus, these results suggest that LOX plays a key role in odontoblastic differentiation of HDP cells.

Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

  • Woo, Su-Mi;Lim, Hae-Soon;Jeong, Kyung-Yi;Kim, Seon-Mi;Kim, Won-Jae;Jung, Ji-Yeon
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.604-609
    • /
    • 2015
  • The active metabolite of vitamin D such as $1{\alpha}$,25-dihydroxyvitamin ($D_3(1{\alpha},25(OH)_2D_3)$ is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin $D_3$ metabolite, $1{\alpha},25(OH)_2D_3$, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with $1{\alpha},25(OH)_2D_3$ in the absence of differentiation-inducing factors. Treatment of HDPCs with $1{\alpha},25(OH)_2D_3$ at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, $1{\alpha},25(OH)_2D_3$ enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, $1{\alpha},25(OH)_2D_3$ induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by $1{\alpha},25(OH)_2D_3$. These results demonstrated that $1{\alpha},25(OH)_2D_3$ promoted odontoblastic differentiation of HDPCs via modulating ERK activation.

Effect of Resveratrol on Cell Differentiation and Mineralization in Cultured Odontoblasts

  • Shin, Sang Hun;Kim, Jae-Sung;Kim, Su-Gwa;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • Resveratrol (3,4',5,-trihydroxystilbene), a phytoalexin present in grapes, exerts a variety of actions to reduce superoxides, prevents diabetes mellitus, and inhibits inflammation. Resveratrol acts as a chemo-preventive agent and induces apoptotic cell death in various cancer cells. However, the role of resveratrol in odontoblastic cell differentiation is unclear. In this study, the effect of resveratrol on regulating odontoblast differentiation was examined in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. Resveratrol significantly accelerated mineralization as compared with the control culture in differentiation of MDPC-23 cells. Resveratrol significantly increased expression of ALP mRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly accelerated expression of Col I mRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly increased expressions of DSPP and DMP-1 mRNAs as compared with the control in differentiation of MDPC-23 cells. Treatment of resveratrol did not significantly affect cell proliferation in MDPC-23 cells. Results suggest resveratrol facilitates odontoblast differentiation and mineralization in differentiation of MDPC-23 cells, and may have potential properties for development and clinical application of dentin regeneration materials.

The Role of Autonomous Wntless in Odontoblastic Differentiation of Mouse Dental Pulp Cells

  • Choi, Hwajung;Kim, Tak-Heun;Ko, Seung-O;Cho, Eui-Sic
    • Journal of Korean Dental Science
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • Purpose: Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. Deletion of the Wntless (Wls) gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation. However, it remains unclear if autonomous Wnt ligands are necessary for differentiation of dental pulp cells into odontoblast-like cells to induce reparative dentinogenesis, one of well-known feature of pulp repair to form tertiary dentin. Materials and Methods: To analyze the autonomous role of Wls for differentiation of dental pulp cells into odontoblast-like cells, we used primary dental pulp cells from unerupted molars of Wls-floxed allele mouse after infection with adenovirus for Cre recombinase expression to knockout the floxed Wls gene or control GFP expression. The differentiation of dental pulp cells into odontoblast-like cells was analyzed by quantitative real-time polymerase chain reaction. Result: Proliferation rate was significantly decreased in dental pulp cells with Cre expression for Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic) were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout. In addition, the expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout. Conclusion: Wnt ligands produced autonomously are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis.